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The Doctrine of the Whole Man*

Mathematics has elements that are spatial, kinesthetic, elements that are arithmetic or
algebraic, elements that are verbal, programmatic. It has elements that are logical, didactic and
elements that are intuitive, or even counter-intuitive. It has elements that are related to the exterior
world and elements that seem to be self generated. It has elements that are rational and elements
that are irrational or mystical. These may be compared to different modes of consciousness.

To place undue emphasis on one element or group of elements upsets a balance. It results
in an impoverishment of the science and represents an unfulfilled potential. The doctrine of the
whole man says that we must bring everything we have to bear on our subject. We must not block
off arbitrarily any mode of experience or thought. "There is a Nemesis," says Whitehead, "which
waits upon those who deliberately avoid avenues of knowledge."

We must realize that the future of the subject depends only in part on the contribution of
those who have rigid establishment interest or training in the subject. As regards this training
and our own teaching we must

restore geometry,
restore kinesthetics and mechanics,
restore combinatorics,
restore intuitive and experimental mathematics,
deemphasize somewhat the theorem-proof type of lecturing,
give a proper place to computing and programmatics,
make full use of computer graphics,
eliminate the fear of metaphysics, recognizing that in such principles may lie seeds of future

growth.
What we want to do is to create as rich and diverse a brew of thought and action as we can.

This is the kind of culture which has fostered mathematics in the past and should be our very
present hope for the future.

*From P. J. Davis and J. A. Anderson Nonanalytic aspects of mathematics and their implications for research and
education, SIAM Rev., (1979), pp. 112-125.
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Preface

"Classroom Notes in Applied Mathematics" was started in the SIAMReview in 1975 to offer
classroom instructors and their students brief, essentially self-contained applications of mathe-
matics that could be used to illustrate the relevance of mathematics to current disciplines in a
teaching setting. The section has focused on modern applications of mathematics to real world
problems; however, classical applications were also welcomed.

It was the plan from the beginning to gather the Notes into a collection to be published by
SIAM. The present volume is the result. The only changes that have been made to the original
Notes as they appeared in the SIAM Review have been to correct some misprints and to add a
number of author postscripts. I have also included a small selection of applied problems, almost
all with solutions, from the "Problems and Solutions" section of the Review when I felt them
to be particularly illustrative of the material under discussion.

The Notes have been classified into two broad sections: (I) Physical and Mathematical
Sciences, and (II) Life Sciences. These two sections have been further divided into subsections.
At the end of each section or subsection I have added a list of supplementary references. Although
not meant to be exhaustive, the listings should provide the instructor and the student with con-
siderable resource and background material in many fields of applications. I must confess to
the reader that there is a certain arbitrariness in the classification of the Notes in the table of
contents. At times this is because I had a paucity of Notes in certain fields, but often it is simply
due to the multifaceted character of the Notes themselves. I regret the fact that we had no Notes
submitted in the behavioral sciences and, therefore, for readers who are also inclined to this broad
field, I have included an unsolved problem and a list of references as an appendix to the volume.
Because there is only one Note pertaining to music, entitled "Optimal temperment," it is in-
cluded in the section on Optimization. However, it has its own list of supplementary references
in the field of music. Similarly, since the three Notes pertaining to sports deal with probabili-
ties, they are included separately under Stochastic Models but have their own list of supplemen-
tary references in sports. Similar treatments are accorded to some other sets of Notes.

Many of the references were selected deliberately from a group of journals that are easily
accessible or that I consider to be well written. These include papers, both recent and non-recent,
from the American Mathematical Monthly (AMM), American Journal of Physics, American
Scientist, Bulletin of the Institute of Mathematics and Its Applications (BIMA), Mathematical
Gazette, Mathematics Magazine (MM), Scientific American, and the SIAM Review. A number
of the references contain their own large bibliographies; for example, "The Flying Circus of
Physics" by J. Walker has 1,630 citations.
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Naturally, many of the references reflect my own interests, in particular, in mechanics and
applied geometry. I believe that mathematical models from mechanics offer a number of advan-
tages in a classroom setting: they can be easily interpreted in physical terms, their analysis often
does not require formidable mathematics, and (for instance, when couched in terms of sports)
they have wide appeal. Geometric models often have the same potential advantages, but they
are usually bypassed due to the unfortunate neglect of geometry in secondary schools and col-
leges in the United States and Canada, a situation that contrasts sharply with, for example, the
state of geometry education in Hungary and the Soviet Union. In 1971,1 had voiced some criti-
cisms (not new) concerning the deplorable state of our geometry education (See On the ideal
role of an industrial mathematician and its educational implications, Amer. Math. Monthly,
(1971), pp. 53-76; reprinted with additional footnotes in Educ. Studies Math., (1971), pp. 244-
269). That these criticisms are still being raised is shown by the recent papers of M. Atiyah (What
is geometry? Math. Gazette, (1982), pp. 179-185) and P. J. Davis and J. A. Anderson (Nonana-
lytic aspects of mathematics and their implications for research and education, SIAM Rev. (1979),
pp. 112-125), as well as the earlier work of F. J. Weyl (The perplexing case of geometry, SIAM
Rev., (1962), pp. 197-201). To encourage renewed attention to geometry, I have included a large
list of applied geometry references.

I wish to thank all the contributors and all the respective referees over the past 12 years for
their concern and involvement with applied mathematics in the classroom setting and their will-
ingness to develop and present examples in a useful way. I would also like to thank SIAM's editorial
and production staff, in particular, Meredith Allen, Alison A. Anderson, and Claire Tanzer,
for their help in polishing and putting this volume in final form.
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Introduction

For the beginning of this monograph I feel it is fitting, especially for instructors and stu-
dents who are new or relatively new to "Mathematical Modelling," to describe the process. I
do so by reprinting a short note from the journal, Mathematical Modelling 1(1980)63-69. Instruc-
tors using any of the subsequent notes for the classroom should be prepared to augment the mate-
rial as well as to delineate the six stages of the process as described in this first introductory note.



MATHEMATICAL MODELLING:
DIE CUTTING FOR A FRESNEL LENS*

M. S. KLAMKINf
Communicated by E. Y. Rodin

Abstract—The various stages in the mathematical modelling of real problems are first discussed
briefly and then illustrated stepwise with the problem of cutting a die for the lenses of automo-
bile stoplights. This requires the determination of the shape of a groove cut into a rotating metal
blank as a function of the shape of a cross-section of a rotating cutting tool.

1. INTRODUCTION

Mathematical modelling has become more and more visible in course offerings at various depart-
ments of mathematics in our universities and more books and papers are appearing in this field
(see [1-14]). The reasons are not only economic but also that mathematics is being used in more
fields than heretofore. It is thus fitting, in the inaugural issue of this journal, to give a specific
example of mathematical modelling from the very beginning where a more or less imprecise
question is raised to a final answer of the question made more precise. The problem treated here,
the cutting of a die for manufacturing Fresnel lenses for automobile stoplights arose when I was
with the Ford Motor Company Scientific Research Laboratories and except for some brief mention
of the problem at some colloquia [13], it has only appeared as an internal report.

To set the stage for mathematical modelling or equivalently "the applied mathematician at
work," I now briefly include some aspects of the process which has been presented in more detail
elsewhere [6, 13, 15].

Joe Keller once defined applied mathematics as that science of which pure mathematics is
a branch. Although this is a sort of tongue-in-cheek definition, it does make the point that to
do applied mathematics, you have to know things other than mathematics. Related to this, Syd-
ney Goldstein once said that to be a good applied mathematician, you have to be one-third phys-
icist, one-third engineer and one-third mathematician. At present, since mathematics is being
applied much more broadly than then, we would have to have different mixes.

A better description of applied mathematics had been given by John L. Synge. He noted
that applying mathematics to a real problem involves three stages. The first stage is a dive from
the world of reality into the world of mathematics. The second stage is a swim in the world of
mathematics. The third stage is a climb back from the world of mathematics into the world of
reality and, importantly, with a prediction in your teeth. With respect to this analogy, one of the
criticisms of mathematics teaching is that too much time is spent almost exclusively to the mid-
dle stage, the swim in the ocean of mathematics. This stage is certainly important but insofar
as applications of mathematics in the real world are concerned, the first and third stages are equally
important. And it is because these stages have not been stressed as much as the second stage,
that there are difficulties in applying mathematics.

Other mathematicians such as Crank [16], Pollak [15], Sutton [17], Ver Planck and Teare
[18] amplified the above three stages into five or more stages. In terms of one word descriptions
of Henry Pbllak, we have:

"Copyright 1980, Pergamon Press, Ltd. Reprinted from Mathematical Modelling, 1, (1980), pp. 63-70 with permission
of the publisher. Received by the editors December 1979.
tUniversity of Alberta, Edmonton, Alberta, Canada.
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MATHEMATICAL MODELLING 3

I. RECOGNITION

II. FORMULATION
A Feedback

I I I . SOLUTION

IV. COMPUTATION

V. COMMUNICATION

While there are no sharp boundaries between these stages, they do catch the mathematician in
different attitudes.

1. First of all one has to recognize that there is a problem and what the problem is.
II. Once the problem is recognized and determined, there must be a mathematical formula-

tion of the problem.
III. After the formulation, one has to obtain a mathematical solution of the problem which usu-

ally will be an approximation.
IV. The mathematical solution will usually involve computation and will require the use of com-

puters.
Coupled with the last two stages, there should be feedback to the first two stages to ensure

that the problem actually being solved is indeed the problem which was supposed to be solved
and not some other one, albeit interesting, that is related to it.

V. Finally, there is the last stage of communication. If the solution is not communicated well
to the persons needing the solution, all the previous work is to no avail, except possibly for
publication in some journal. Unfortunately, the "publish or perish" syndrome is still with us.

In regard to the first two stages of recognition and formulation, Synge [19], back in 1944,
had this to say about the purist mathematicians (this is less valid now):

Nature will throw out mighty problems but they will never reach the mathematician. He will sit in his ivory
tower waiting for the enemy with an arsenal of guns, but the enemy will never come to him. Nature does
not offer her problems ready formulated. They must be dug up by pick and shovel, and he who will not
soil his hands will never see them.

Also, there is a big difference in attitude between an applied and a pure mathematician. For
instance, a pure mathematician can work on a given problem for years, and if it turns out to be
intractable, he can alter the problem. To paraphrase a line from Finian's Rainbow, if a mathema-
tician cannot handle the problem on hand, he'll handle the problem out of hand. The applied
mathematician when he is given a problem must handle the particular problem on hand; his job
may depend on it. First of all, he'll have to check to see if the problem that's given to him is really
the problem that they're trying to solve, because many times the problem they give to you is not
really the problem they want. He must come up with an answer, usually an approximation, that
is optimal, in a sense, with regard to cost and time. You can't work on the problem for five years
unless it's a very important problem to the company, and usually they're not that important. Finally,
if he's successful he must communicate his results in such a way that they're understandable to
his superiors.

It is now time for me to discuss the problem of the Fresnel lens in relation to the above
five stages.

2. RECOGNITION: DIE CUTTING FOR A FRESNEL LENS
If you look at the brake lights on automobiles you will see them covered by red lenses. These
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are Fresnel lenses designed to concentrate the light emitted by the brake lights. A number of
years ago, the U.S. government decided that whatever the light intensity was at various points
behind the brake lights when lit, they would all have to be increased considerably; they figured
it would be safer. One simple response to this new requirement would be to just increase the
candle power output of the brake bulbs. However, this is not an efficient solution since car bat-
teries are already loaded with lots of peripheral equipment. To do a better job, optical engineers
spend a lot of effort redesigning the Fresnel lenses by means of ray tracings to do a more effi-
cient job of concentrating the light. The problem now was to make a die from which to form
the plastic lenses. Since Ford Motor Company does not make everything it needs, they gave the
design of the Fresnel lenses to an outside vendor who was supposed to make the corresponding
die. Subsequently, the vendor came back to the company and asked for a relaxation on the toler-
ances for several of the inner most grooves of the lens since otherwise they could not make the
die. The optical engineers were not sure why the inner grooves could not be cut to their speci-
fied tolerances. One of them, R. M. Ferrell, once heard me give a lecture on solid geometry
at a sectional M. A. A. meeting in Minnesota and figuring correctly that this was indeed a solid
geometry problem, came to me and simply asked why the inner grooves could not be cut to the
specified tolerances. I did not know what the reason was at that time or even after thinking about
the problem for several days. Consequently, I called Ferrell back and told him I would like some
samples of the brake light lenses as well as any description of the cutting process he could give
me. He produced the samples as well as some description of the cutting process. I was then able
to carry out the next stage.

3. FORMULATION

The grooves to be cut into the die are to be surfaces of revolution about a common axis.
A cross section, containing the axis, of a typical groove is to be bounded by a straight line and
a circular arc as indicated in Figure 1 (note that only one of the many grooves are shown in the
figure).

Fig. 1.

The grooves are to be cut out of a rotating solid metal blank by means of a rotating tool which
is a body of revolution. Schematically, we have Figure 2 for half the cross-section (by a plane
containing the axis of the cutting tool and the axis of the blank) of the cutting tool (the cross-
hatched region) and the metal blank. The cutting tool rotates about the axis PP". The surface
of the metal blank corresponds to TOX after the groove has been completely cut out by gradu-
ally moving the rotating blank up into the cutting tool.

At this stage, I still did not know why the inner grooves could not be cut to the desired toler-
ances. I then had a fruitful discussion about the problem with my then immediate supervisor,
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Fig. 2.

A. O. Overhauser, a physicist and head of the Physical Sciences Department. He noted that even
if the cross-section of the cutting tool was an infmitesimally thin blade, the segment OQ, a groove
would still be cut out and consisting of an inner cylindrical and an outer toroidal surface. Note
that as POQ rotates, the distance of point Q from the axis 75 of the metal blank increases mono-
tonically from a minimum value when POQ is perpendicular to the blank to a maximum value
when Q is on the surface of the blank. A cross-section of this groove is given in Figure 3. Here,
OA = [r2 + (R + a)2 — R2]l/2 — r and QA is an arc of a circle centered at M (the intersection
of the two axes).

It now finally dawned on me where the difficulty lay. The cross-section of the cutting tool,
for any particular groove, was designed to be the same as the cross-section of that groove. How-
ever, the groove actually cut out by the cutting tool need not exactly correspond to the cross-
section of the cutting tool as indicated above by cutting with a line segment. The mathematical
problem here was to determine the shape of the actual groove cut out as a function of the shape
of the cutting tool. Then one could determine the distortion, if any, in the groove that was actu-
ally cut. So here, finally, was a clear mathematical problem in solid geometry but again I was
stymied for a while. Although, I am reasonably competent in solid geometry problems now,
I think my early training in geometry was much at fault. I never had any solid geometry until
my 8th term in high school and that was of the formal axiomatic type which has been roundly
and soundly criticized in the plane geometry case. Nevertheless, I was still fortunate since the
vast majority of high school students never got any solid geometry. The late Professor Steenrod
had taught elementary calculus courses to see what they involved. He came to the conclusion

Fig. 3.
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that in calculus, there is lots of geometry, but unfortunately the students get little out of it because
due to limitations of time and everything else, the instructor essentially does all the geometry
and leaves just the analysis (if that) for the student. Then when they get answers, the reinterpre-
tation back into geometric form is again done by the instructor [20]. Also, when I worked for
AVCO Research and Advanced Development Division, I found that one of the biggest failings
in setting up problems by the engineers and scientists was their rudimentary background in geom-
etry [6].

4. SOLUTION

The shape of the groove actually cut out can be determined mathematically in two steps:
1. We rotate the cutting cross-section PQP' about axis PP" keeping the blank fixed in its

final position. This produces a cut out groove in the blank (which does not go all the way around
the axis of the blank).

2. We find the envelope of the groove by rotating the cut out blank about its axis ST.
As with the cutting with a line segment, the width of the groove cut out by the actual cutting

tool at depth y=X could be greater than that by the width of the cutting tool at that depth [i.e.,
F"'(X)]. This would be due to some point of the cross-section of the cutting tool below y=\
being further from the axis ST after the cross-section has rotated such that the point is also at
depth y=\. Thus, the cross-section actually cut out is obtained by taking the envelope of circles
drawn with M as a center and passing through each point of the curve QN of the cutting tool
cross-section. Analytically, the width w(X) of the cross-section of the groove cut out at depth
X is given by

The maximum of the second term in the parenthesis occurs for that point (x,y) on the curve QN,
in the given range, which is furthest from M. If the curve QN is such that Q is the furthest point,
then the cross-section of the groove cut out is that given by Figure 3. If the distance from M to
points of QN increases monotonically from Q to N, then the cross-section cut out will exactly
correspond to the cross-section of the cutting tool (OQN). If the distance from M to points of
QN first increases monotonically from Wto N' (an interior point) and then decreases monotoni-
cally from N' to N, the other curve of the cross-section cut out will consist of QN' plus a circular
arc from N' to the x-axis with center at M.

In order that the cross-section of the groove cut out corresponds to the cross-section of the
cutting tool, the value of/? cannot exceed a certain maximum value. There is also a lower limit
imposed on R by the practical consideration of clearance for the mounting of the cutting tool.
A simple way of determining the maximum R is given in Figure 4. QN is an arc of a circle cen-
tered at C. It is assumed that the distance from Tto points of QN increases monotonically from
Q to N. Then max R=MTwhere M' is the intersection of CN with ST. If C falls on the left hand
side of ST, then M' is determined by the intersection of line QC with 51

Actually, the point O of the cutting cross-section (Fig. 2) will fall at 0' where OO' is small.
However, this only changes the shape of the inner portion of the groove to a conical surface which
is desired and not our analysis for the restriction on R.

If it turns out that the minimum and maximum values of/? are incompatible (here C falls
below the x axis), then one could design the cutting tool to have a cross-section different than
the cross-section of the groove and such that the actual groove cut out is the one we want. This
would produce a manufacturing difficulty in making the cutting tools since the surface would
no longer be cylindrical and spheroidal which are relatively easy to make.

Before we carry out the next stage, Computation, we need some actual data. Data should
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Fig. 4.

have been included as a stage between Recognition and Formulation as was rightly pointed out
by Peter Hilton. This is an important and possibly difficult stage. The data could be experimental,
statistical or both. How and when to stop collecting data and their subsequent treatment is a subject
in itself. As an indication of possible pitfalls in collecting statistical data, we have the following
two classic cases:

Back in the days of the Roosevelt-Landon presidential election, the Literary Digest, one of
the top circulation magazines of that era, took a very large poll of 2,000,000 people by means
of random phone calls across the country. The sampling indicated a landslide for Landon whereas
actually there was a landslide for Roosevelt. Subsequently, the magazine went out of business
since it was felt that the prediction was a dishonest attempt to influence the election. There was
no overt dishonesty. It was a case of a heavily biased sample despite it being large. At that time,
people who had telephones were likely to be wealthy and wealthy people were likely to be Repub-
licans who would vote for Landon.

For the second sample, there was a city that bragged about its cultured inhabitants as indi-
cated by the very high attendance at its museum by actual daily count. Soon after a small build-
ing was built across the street from the museum, the museum attendance dropped off sharply.
What was the small building? (It was a public lavatory!)

5. COMPUTATION

From the actual dimensions given for the grooves, it turned out that

max R=M'T=Q.56 in.

Since the shaft of the cutting tool has to be reasonably hefty, otherwise there would be chatter
during the cutting process, its diameter could be taken as 0.5 in. This leaves a clearance of 0.06
in. which although quite small is still adequate.

The machinists of the outside vendor, from their practical experience, felt that there would
not be enough clearance to cut the inner grooves without distortion. And they were very nearly
correct.

6. COMMUNICATION

The above analysis was transmitted in my report to the Body Light Section with a conclu-
sion in English stating that there would be enough of a clearance, using a shaft diameter of the
cutting tool as 0.5 in., such that the grooves could be cut to the tolerances required. This was
then transmitted back to the vendor who went ahead and cut the die to the prescribed tolerances.

The example described was fortunately one of those rather "clean" ones after their formu-
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lation. Frequently, this is not the case and one will have to make various approximations before
getting a final answer.

Acknowledgement—I am grateful to R. M. Ferrell and A. O. Overhauser for fruitful discussions which led to the final
resolution of this problem.
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1. Mechanics

A DRIVING HAZARD REVISITED*

EDWARD A. BENDERt

John Baylis [1] considered the following problem: When making a right hand
turn on British roadways one moves as far to the right as possible on one's side of the
roadway and then turns. Unfortunately, the rear of the vehicle moves leftward as the
right hand turn is begun—toward the unsuspecting driver passing on the left. This can
be quite noticeable if the turning vehicle is a long bus.

We assume familiarity with Baylis's paper and notation. Recall that he defines

/ = length of wheelbase,

h = length of rear overhang,

$ = angle between bus and direction of roadway,

8 - angle of front wheels relative to the bus,

V = speed of the bus.
We add

2w = width of the bus.

(The factor of 2 simplifies some later formulae.) In the process of turning there is some
slippage of the front wheels. Consequently the wheels follow different paths and the
definition of 6 is nonsense. If w is small compared to /, we can ignore this. We would
follow Baylis and define 6 to be the angle between the path of the outside front wheel
and the side of the bus. However, it seems more natural to let 6 be angle between the
path of R and the center line of the bus. See Fig. 1. (One could argue that 0 should be
the angle between the path of the inside front wheel and the side of the bus since this
reflects how tight the turn is.) This article is adapted from [2, § 8.1].

As Baylis points out, we are interested in the path of the bus, not the rate the path
is traversed. Hence we may assume that V is constant. (We could even set V= 1.)
Baylis shows that

and that the rightward displacement of R in Fig. 1 is

by (1). The leftward displacement of P is

and so the leftward displacement of N is

* Received by the editors March 15, 1978. Adapted, by permission, from the model in Section 8.1 (pp.
148-152) of AN INTRODUCTION TO MATHEMATICAL MODELING, by E. A. Bender. Copyright ©
1978 by John Wiley & Sons, Inc.

t Mathematics Department, University of California, San Diego, La Jolla, California 92093.
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FIG. 1

We wish to maximize / so we set its derivative equal to zero and use (2):

Our basic equations are (2)-(4).
To make further progress we must describe how 0 varies throughout the turn.

Baylis assumes 0 = K — <j> for,some constant K because "this at least has the advan-
tage of analytic solution". The same can be said for the assumption 6 = C. We will
compare the results of the two assumptions

First suppose 0 = C. Using sin (0 + <£) = sin 0 cos <f> +cos 0 sin <j> and solving (4)
we have

Integrating (2) we obtain

Given the values of w, I, h and C we can find the optimum <f> from (5) and use this in
(6) and (3) to determine the maximum leftward displacement of the rear of the
vehicle. We have used / = 16', h = 10' and w = 4' for a bus to obtain Table 1. The last
row will be explained later.
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TABLE 1

C I 20°

<t>
f
K

12°
1.0'
26°

30°

18°
1.5'
39°

40°

23°
2.1'
52°

50°

30°
2.7'
65°

60°

37°
3.4'
79°

70°

46°
4.2'
93°

Now we consider 6 + 4> = K. Substituting 0 = K - 4> in (4), multiplying by sin 6 =
sin K cos (j> -cos K sin <£, and rearranging, we obtain

The leftside of this equation is A sin (20 -5) where

and -90° < 8 < 90°. Hence

Integrating (2) we obtain

Using (7), (8) and (3) as before we obtain Table 2. The last row will be explained
shortly.

TABLE 2

K

<i>
f
C

20°

7°
.8'

16°

30°

11°
i.r
24°

40°

15°
1.5'
33°

50°

18°
1.9'
41°

60°

22°
2.3'
49°

70°

26°
2.7'
57°

We would like to somehow compare Tables 1 and 2 to see if they make similar
predictions concerning /. Since / depends heavily on C in Table 1 and on K in Table
2, it is not clear how to do this. We adopt the following scheme. Start with a column of
Table 1. Let K be the average value of 6 + 0 as the bus moves from its initial position
to the point at which /(0) is a maximum. We will compare Table 1 with the Table 2
entry for K equal to K. For example, C = 20° gives K = 26°. Using linear inter-
polation on K = 20° and K = 30°, we find that Table 2 gives / = 1.0', which agrees with
Table 1. Since this definition of K involves a lot of calculation, we have replaced it by
the average of the largest and smallest values of 6 + 0, i.e., K = 0 + 0/2. For similar
reasons we define C = AT-0/2 for Table 2. Now we can compare one table with
another. The predictions are fairly close. This suggests that for any reasonable turning
scheme the maximum value of / will depend primarily on the average value of 6 (or
0 + 0 if you prefer) as the driver bus moves from its initial position to the position at
which / is a maximum. In particular, sharper turns produce larger leftward displace-
ments.

REFERENCES
[1] J. BAYLIS, The mathematics of driving hazard. Math. Gaz., 57 (1973), pp. 23-26.
[2] E. BENDER, An Introduction to Mathematical Modeling, Wiley-Interscience, New York, 1978.



18 POSSUM AND LEWIS

A MATHEMATICAL MODEL FOR TRAILER-TRUCK JACKKNIFING*

TIMOTHY V. FOSSUMt AND GILBERT N. LEWISt

Abstract. We present a differential equation which is a model for the position of a trailer relative to the
cab which is pulling it. The solution is given for two examples, and the results are generalized in a theorem.

Suppose that a cab is pulling a trailer which is d units long. With suitable scaling, d
can be taken to be 1. We can represent the positions of the cab and trailer by two
vectors. Let X be a position vector whose terminal point is at the trailer hitch on the cab,
and let Y be a position vector whose terminal point is at the midpoint between the
wheels of the trailer. We represent the truck-trailer combination as shown in Fig. 1. X
will be a given, "smooth" function of time t. We would like to be able to predict Y. That
is, for a given path X = X(t), we want to know if the truck-trailer will jackknife.
Alternatively, we want to determine what conditions we must impose on X(f) to prevent
jackknifing.

FIG. 1

We model the motion of Y as follows. First, the trailer length |X-Y| = 1 is
constant, which shows that

where • is the vector dot product. Also, the wheels of the trailer constrain the vector Y so
that its velocity vector is directed along the trailer's lateral axis X-Y. That is,

for some A, where Y = dY/dt.
Differentiating (1) yields 2(X-Y) • (X-Y) = 0 and so

* Received by the editors April 9, 1979, and in revised form August 25, 1979.
t Department of Mathematics, University of Wisconsin-Parkside, Kenosha, Wisconsin 53141.
t Department of Mathematical and Computer Sciences, Michigan Technological University, Houghton,

Michigan 49931.
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Taking the dot product of (2) on both sides by X-Y yields Y - ( X - Y ) =
A (X-Y)- (X-Y) = A , a n d s o b y (3), A = X - (X-Y). Therefore, (2) becomes

We introduce Cartesian coordinates to describe X and Y. Let X = ( x i , x 2 ) and
Y = (yi, y2). Equation (4) can be written as the system

For convenience, let Z = X-Y, so that (4) can be rewritten as

If the cab is moving forward, we say the cab and trailer are jackknifed if X • Z<0;
otherwise, we say they are unjackknifed. These two configurations are illustrated in Fig.
2. If the cab is backing up, the above situation is reversed. That is, the cab and trailer are
jackknifed if X • Z>0 and unjackknifed otherwise; see Fig. 3.

FORWARD

FIG. 2

FIG. 3

Example 1. Consider the cab moving forward in a straight line. We may assume the
cab travels along the positive x-axis, with X(f) = (t, 0). Since |Z = 1, the point Z(0) =
X(0) - Y(0) = -Y(0) must lie on the unit circle, so we may assume F(0) = (cos a, sin a)
for some real a. Then the system (5) becomes

whose solution is
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Applying the initial conditions, yi(0) = cos a, y2(0) = sin a, we obtain

and

This solution shows that unless the cab and trailer start in the (rather unrealistic)
completely jackknifed position with a = 2mr, the trailer will approach the position
following the cab. That is, a = 2mr is an unstable initial condition with solution
Y(f) = (r + 1, 0), while a ^2mr as an initial condition leads to the stable limiting
solution Y(r) = (r-1,0).

Alternatively, we can consider the similar example in which the cab is backing up.
In this situation, the solution shows that, except for the unstable initial condition
a = 2/J7T, which corresponds to the trailer directly behind the cab, all solutions
ultimately approach the jackknifed position. Anyone who has attempted to back up a
vehicle with a trailer can attest to this fact.

Example 2. Consider the cab traveling along a circle of radius r. For the moment,
assume r>l. We may assume X(f) = (rcos t, r sin t). Again, since Z(0) = X(0)-Y(0)
has length 1, we may assume Y(0) = X(0) + (cos a, sin a). Intuition, aided by computer
graphics, tells us that the trailer should approach an asymptotically stable state. It seems
reasonable that the cab-trailer combination should approach the configuration shown
in Fig. 4. In fact, direct substitution into (4) or (5) shows that the function

is a solution, where

In the usual terminology of phase plane analysis, Yi(f) represents a periodic
solution, and the path of Yi(0 represents a stable limit cycle. We verify this in the
following way.

The differential equations (5) become

We introduce new variables by letting

The differential equations for u and v are

(Note:If Thus
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FIG. 4

This system has three critical points; (0, 0), (c/r, c2/r) and (-c/r, c2/r), all of which
correspond to actual solutions.

The first can be eliminated from consideration, since (u, v) = (Q, 0) implies
(y i» yz) = (0, 0). If this were the case, then 1 = |AT — F| = |AT = r > 1, a contradiction. It
should be noted that (0, 0) is a saddle point for (9).

The second critical point corresponds to the solution YI. The linearized version of
(9) about this solution is

where w = u - c/r, z = v —c jr. Both characteristic values (—c and —2c) of this system
are negative. Therefore, by standard theorems of phase plane analysis (see, for
example, [1, Chapt. 11]), the solution (c/r, c2/r] of (9) is stable, and all other solution
paths which start close to it will approach it. The point (c/r, c2/r) is a stable node for (9).

The third critical point corresponds to another solution

of (7). Analysis similar to that given above shows that this is an unstable (node) solution.
In fact, it represents the same orbit as that for YI. In this case, the cab-trailer
combination is in a jackknifed position initially and will remain in that position.
However, any deviation from that initial position will cause the cab-trailer to wander
farther away from the initial configuration.

Now, any solution of (4) must satisfy r- l^ |Y|^r + l since |X - Y| = 1 and |X| = r.
Hence, any physically meaningful solution of (9) other than (—c/r, c 2 / r ) and (0, 0), must
approach (c/r, c2/r}. Any bounded solution cannot approach (-c/r, c2/r] or (0, 0), and
there cannot be another periodic solution (limit cycle). If there were, there would have
to be one enclosing none of the previously mentioned critical points, and thus there
would have to be more critical points. Thus, all bounded solutions of (7) approach the
stable periodic solution YI, with the exception of (-c/r, c /r) and (0, 0). In terms of our
original model, the trailer approaches the periodic solution of an unjackknifed trailer
shown in Fig. 4. We assume, of course, that the trailer is free to rotate 360° around the
hitch without the cab getting in the way. In general, as long as Y(0)^Y2(0), then
Y ( f ) - » Y i ( r ) a s r - » o o .

As before, if the cab is backing up, then the jackknifed solution Y2(f) is stable, and
all others, except \\(t), approach it. The solution Yi(f) is the only solution in which the
cab-trailer combination remains unjackknifed, yet it is unstable.
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In the above example, we assumed that r > 1. If r = 1, then Y(r) -»(0, 0). If r < 1,
then the cab-trailer will enter a jackknifed position, even if it started in an unjackknifed
position. This will hold whether the cab is going forward or backing up.

We gain some insight into the general situation from the above example. In
particular, if r is too small in Example 2, the cab-trailer jackknifes. From this, we
postulate the following theorem.

THEOREM. Assume X is twice continuously differentiable. If the length of the trailer is
1, if Kr(t), where r(t) is the radius of curvature of X, and if X(0) • Z(0)>0, then
X(t)-Z(t)>Qforallt>0.

In other words, if the cab is moving forward and the cab-trailer combination is not
originally jackknifed, then it will remain unjackknifed. On the other hand, if the cab is
moving backward and the cab-trailer is originally jackknifed, then it will remain
jackknifed.

Proof. Let f(t) = X • Z. Then /(O) > 0, and / is continuously differentiable. Suppose
the conclusion of the theorem is false. Then there exists ti > 0 such that f(t\) = 0 and
/'(fi)SO. Assuming that |Z| = X- Y| = 1 (trailer has length 1) and |X| * 0 (cab doesn't
stop), we have X(fi) • Z(ti) = 0 so that X(fi)lZ(fi) . Also,

and

We now use a familiar formula for acceleration (see, for example, [2, p. 423]):

where t and n are unit tangent and normal vectors respectively. Then t(ti) is parallel to
X(fi), and Z(fi) is parallel to «(fi). Therefore, X(ri) • Z(ti) = ±«-(f1)|X(?])|

2, and

We conclude that / '(fi)>0, since K(? I ) = l/r(ti)<\. This contradicts our assumption
that f'(ti) g 0, and the theorem is proved.

Acknowledgment. The authors would like to express their thanks to Professor
Otto Ruehr for his valuable assistance.
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DETERMINING THE PATH OF THE REAR WHEELS OF A BUS*

H. I. FREEDMANt AND S. D. RIEMENSCHNEIDERt

Abstract. Given the locus of the path travelled by the front wheels of a bus, we derive a differential
equation describing the path of the rear wheels which we explicitly solve in the case of a straight line and a circle.
These solutions can be applied to such specific problems as a bus turning a corner or a bus changing lanes.

Introduction. Suppose that the front wheels of a bus track a given path. What is the
path traversed by the rear wheels of the bus? Obviously, some knowledge of the solution to
this problem is useful in highway design and in the placement of curbs at intersections. A
related problem concerns a driving hazard considered by John Baylis [1] and Edward A.
Bender [2]. The hazard is caused by the fact that as a bus turns a corner, the rear of the
bus initially moves in the direction opposite the turn, possibly into the path of a passing
motorist. Baylis and Bender wanted to know the maximal displacement of the rear of the
bus in the direction opposite the turn, a quantity easily determined if the path of the rear
wheels is known.

Statement and solution. Let P ( t ) •= ( p \ ( t } , p 2 ( t } } be the coordinates of the midpoint
of the front axle of the bus, which describes a suitably smooth path of motion as a function
of t. The rear axle, at a distance L from the front axle, will have the coordinates of its
midpoint given by Q(t) ;= ( q \ ( t ) , <72(0)- Our problem is to find Q(t) if we are given P(?)
and the initial position of the bus. We could have taken P ( t ) and Q(0 to be the positions
of the front and rear wheels on one side of the bus. In any event, once Q(0 is determined
then so is the path followed by any point on the bus. For example, in Fig. 1 the path of the
front right wheel is given by

and the path of the left rear corner is

where

Clearly, Q(t) moves in the direction of P(/) at any instant. The motion of Q(f) is
described by

*Received by the editors July 27, 1982, and in revised form February 24, 1983. Research for this paper
was partially supported by the Natural Sciences and Engineering Research Council of Canada, under grant
NSERC-A-4823 for the first author and NSERC-A-7687 for the second author.

tDepartment of Mathematics, University of Alberta, Edmonton, Alberta, Canada T6G 2G1.



24 FREEDMAN AND RIEMENSCHNEIDER

FIG. 1. The wheel positions can be computed if the axle positions are known.

The necessity of the unknown scalar factor y(t) is what makes this problem interesting.
The solution of (1) is

Integrating by parts and setting p,(0) = />/i0, / = 1, 2, we obtain

Let £(0 = exp (/0' 7(5) ds). Using |P(r) - Q(/) | = L, from (3) we have

Differentiating both sides of (4) and cancelling common factors, we obtain

Let iK/) be given by n(t) = /?,,0 - ?,,0 + fof(s)p'\(s) ds, so that q'(t) = £ ( t ) p \ ( t ) . Using
equation (5) to solve for p2,o — ^2,0 + /0' £(S)P2(S) ds and the definition of ?;(/), (4)
becomes

Unfortunately, we are unable to explicitly solve this equation.
We are able to get a simple differential equation for £(/) when the motion of the front

of the bus is described as a solution of the second order linear differential equation,

where a, b, c are constant and d = (*/,, d2) is a fixed vector. Differentiating (5) two more
times yields the equations
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Using (6) we find that

or, using (6) again, £(/) satisfies the third order linear homogeneous differential equation

More generally, if the differential operator on the left side of (6) were replaced by an
nth order constant coefficient differential operator, or even if (6) where replaced by the
(n + l)st order homogeneous linear differential equation S"̂ 1 aj(t)P(j)(t) = 0, then this
method would result in an («+ l)st order linear homogeneous differential equation for
£(?)• Equation (10) is suitable for our purposes if we assume that in turning a corner or
changing lanes the bus follows a path described by circles and straight lines. In these cases
equation (10) will be solved in the sequel.

Straight line motion. As one would expect, if P(t) follows a straight line, then from
any initial direction of P ( t ) - Q(t) the motion of Q(/) will asymptotically approach the
same straight line. In (6) we take a = 1, 6 = c = 0, d = 0, and write pt(t) = att + ft,
/ = 1,2. Then equation (10) reduces to

which has the solution

where

Since £(0) = 1, we have k\ + k2 = 1. From (5), (6)

which implies
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where 60 is the angle between the initial direction of the bus and the direction of the line of
motion. Similarly from (7)

Therefore,

where X and £3 are given by (11) and (12) respectively. Substituting this into (3) we derive
the solution

where X and k} are given in (11), (12).
Circular motion. In the case of circular motion, we will take

which are solutions of the differential equation
Then (10) reduces to

There are three cases corresponding to the relative size of the length of the bus and the
radius of the circle; L > r, L = r, L < r.

where

From£(0) = 1, (5) and (7), we obtain linear equations for fc,, k2, k} with solution

In terms of the quantities (17), (18) and (19), the path Q(t) is given by



MECHANICS 27

where P'(at) is dP/dt evaluated at at.
Case L = r. If r = L, then

where

In this case the path of Q(?) has the description

Observe that as J^ oo, Q(r) approaches P(f) + l/o>2 P"(0 = (5,,62)-
Cose L < r. In this case, £(/) satisfies the differential equation

where

where the constants are found to be

Evaluating (3) in this case we find the equation of motion is

Note that as

or
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which is a circle centered at (§,, 62) and radius 

Other paths. Certain other motions satisfy simple second order linear equations, but
the solutions for £0) and Q(r) will require numerical techniques. We list a few examples
below.

Elliptic motion. If the point given by P traverses an ellipse, P may be parametrized
by

which satisfies the same differential equation as circular motion. However in this case the
equation for £(/) is

Parabolic motion. For parabolic motion we take P(t) = (a, t2 + /?, t + e,, ft/ + e2).
Then P"(0 = a, («2 - 0), and the equation for £(/) is

Hyperbolic motion. Hyperbolic motion is given by

in which case P"(0 - ^2P(0 - —d = (-a>25,, -ai252). The equation for £ (t) in this case
is

Applications. The above analysis can be applied to several specific common occur-
rences.

i) Turning a corner. The path of the rear wheels can be computed by having the
point given by P move around a quarter circle followed by straight line motion. The path
of the rear wheels is found by piecing together solutions from the two special cases above
(see Figure 2b). Normally in making a right turn (left turn in Britain) r < L. Hence when
the turn is initiated too close to the corner, a rear wheel will go over the curb (a common
experience for bus riders).

ii) Changing lanes. Changing lanes or pulling out from a curb can be modelled by
having the point given by P traverse an eighth of a circle followed by another eighth of a
circle in the opposite direction so as to "straighten" out the front wheels (see Fig. 2a).

iii) Traffic circles. Traffic circles are quite common throughout Britain and in
some places in North America (for example, Edmonton). The point given by P would
traverse three circular arcs pieced together (see Fig. 2b) simulating entering, moving
around, and exiting from the circle. In this case we would expect r < L when entering and
leaving the circle while r > L in the remaining case. The figure shows that in a tight traffic
circle, the wheels of a bus entering from the right lane, travelling around the center line of
the circle and exiting into the right lane may go over the outside curb when entering and
exiting the circle and over the inside curb as it traverses the circle. This explains why the
driver will swing wide when entering and exiting the circle and will travel in the outside
lane around the circle.
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FIG 2a. Changing lanes. Bus width is 5/6 of the lane width path affront axle, path of rear axle.

FlG 2b. Bus entering a traffic circle from the right lane, traveling around the circle between lanes, and
exiting into the right lane. Bus width is % of lane width. Inner circle radius = L path of front axle,
path of rear axle.

Acknowledgment. The authors are indebted to Mr. Walter Aiello for providing
computer drawn figures.
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ICE BREAKING WITH AN AIR CUSHION VEHICLE*

E. R. MULLERt

Abstract. The ice breaking mechanism under a slow moving air cushion vehicle is explored. The
bending moments which cause the circumferential cracks in the ice are determined for the case where the
pressure of the air cushion is sufficient to depress the water and force air below the ice field. References are
given to the more difficult case where the pressure is insufficient to form an air cavity.
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Introduction. Recent experiments1 using self-powered air cushion vehicles have
demonstrated that they can be used successfully to break up ice on rivers. This is
particularly useful at ice break-up time, when the ice may pack in one section of the
river hindering the flow of water and causing floods above the packed ice. Other
experiments have used air cushion platforms tied to the front of ships. Such an
experiment near Thunder Bay, Ontario, Canada, has demonstrated that an air cushion
platform can be a relatively efficient means of ice breaking compared to conventional
displacement vessels with their large power and crew requirements. The Alexander
Henry, a coast guard vessel, has ice breaking capabilities of two knots in twelve inches
of ice. When fitted with an air cushion platform across its bow the vessel was able to
move through ice seventeen inches thick, at a speed of nine knots, through twenty-
four inch ice at five knots, and thirty inch ice at two knots. When fitted with the air
cushion platform the fuel consumption of the Alexander Henry was drastically
reduced.

The question we wish to explore is how do the size and cushion pressure of the air
cushion vehicle affect its ice breaking capacities.

Properties of the system. Consider an air cushion platform fitted to the front of a
ship as shown in Fig. l(a), and assume that the coupling between the ship and platform
is such that the total weight of the platform is carried by the cushion pressure p (psi).
At rest or at slow speeds the platform floats on the water and displaces its own weight
of water. Measuring d, the mean depression of the water level below the air cushion,
in feet we have

where the weight of one cubic foot of water is taken as 62.3 pounds. Now assume that
the air cushion vehicle approaches an ice field, uniform in thickness, density (0.9 x
density of water), and tensile strength. This ice field floats on the water. If h (in feet) is
the thickness of the ice field, then 0.9 h of this ice field lies below the water level.
Therefore, if the mean depression of the water level below the air cushion exceeds
0.9 h, air will be forced below the ice field as shown in Fig. l(a). If d does not exceed
0.9 h, then Fig. 2(a) is applicable.

To develop a model for the system we require to know how an ice sheet breaks. It
is not difficult to demonstrate that when a weight is placed on a sheet of ice it will, if
sufficiently heavy, cause radial cracks. These cracks emanate from the position of the
weight outwards. If the weight is sufficient, circumferential cracks will then appear,
and the ice sheet will fail. These observations are of primary importance in the
development of any mathematical model since

1. they dictate the symmetry of the problem; that is, plane polar coordinates
should be used, and

2. since ice breaking is of interest, that is failure of the ice sheet is being studied,
the model can concentrate only on those conditions which cause the circumferential
cracks. In other words, the model can assume that the load is sufficient to form radial

* Received by the editors December 5, 1977.
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FIG. 1

cracks, for if these are not formed, the load will be insufficient to cause circumferential
cracks and the ice sheet will not fail.

Basically, the difficult plate problem is reduced to one of determining bending
moments in ice wedges. When these bending moments exceed those which can be
borne by the ice, it breaks.

The model. Consider the case shown in Fig. l(a) where the cushion pressure is
sufficient to cause a mean water depression in excess of 0.9 h. The distribution of load
is then as shown in Fig. l(b), where underneath the air vehicle the total pressure on
top of the ice wedge is equal to that below the ice wedge.

The maximum bending moment in the ice wedge is determined in a number of
steps as follows:

Under a uniform load p per unit area, the total load up to a distance R in the
wedge is given by

where bo is the width of wedge at unit distance.
The moment at R in the wedge is given by

In calculating moments it is possible to replace a distribution of load by a single point
load acting through the center of gravity. Because of symmetry this point will lie on
the bisector of the apex angle at a distance
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FIG. 2

where for convenience we have defined

Consider.a point x >r (r size of cushion) and assume that the air cavity extends
beyond x. The' moment per unit width of an ice-wedge at the distance x under the
distribution of load given in Fig. l(b) is then, for p >0.4 h, given by

that is,

The maximum occurs when dmldx = 0 or at

At this distance .v, the maximum bending moment/unit width, is given by
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If this maximum exceeds the bending moment the ice can bear, the ice will fai l .
A search of the literature to find the maximum bending moment ice can bear

yields little result. Engineers usually measure the strength of a material by its tensile
strength, namely, the maximum load a specimen will bear before it breaks. Engineers
find the tensile strength more accessible to experimental measurement. The tensile
strength (cr) for fresh water ice is 150 psi, and for sea water ice is 90 psi (see, for
example, [4]). The relationship between bending moment and tensile strength is
derived in most texts on strengths of materials, for example [3]. An explicit derivation
for a wedge is given in [2a] and is

Therefore, equating mmax to (rh"/6 we find

This equation relates the variables of interest:

r, the radius of load or size of air cushion;
p. the air pressure or cushion pressure;

and

h, the thickness of the ice field.

Experiments have shown that the ice wedges tend to be narrow and therefore the
factor

is not expected to vary much from 1. In the illustrations which follow /30 has been set
at 77/6.

Equation (1) will now be used to explore the following two questions:
(i) for a given cushion pressure, what is the minimum cushion size required to

break a given thickness of ice, and
(ii) for an air cushion of a given size, what is the minimum cushion pressure

required to break a given thickness of ice?
For the first case we write (1) as

Figure 3 is a plot of r(p, h) for fresh water ice. The corresponding radius of load
required to break a given thickness of sea ice can easily be calculated from Fig. 3 by
taking the corresponding value of r times 0.775.

Experience suggests that the model used here fails when p is close to 0.4/r, for no
maximum in r(p) is expected. In some sense this is no surprise, for when p is close to
0.4/1 two conditions are easily violated; firstly, any bending of the ice will cause it to
touch the water, and secondly, it is unlikely that the air cavity will extend to large



34 MULLER

distances. It would therefore be reasonable to assume that the air cavity does not
extend beyond some distance, for example x = 3r, three cushion lengths, as is
indicated by a dashed line on Fig. 3.

For the second case we explore p(r, h), and from (1) we obtain a cubic in p,
namely

The most profitable way to solve for p is probably by some iterative procedure. Figure
4 shows a plot of p versus h for fixed values of r. We recall that the model is only valid
for p > 0.4/i. Therefore, even though the cubic has solutions for p < OAh, only those
values of p which lie above the dashed line in Fig. 4 reflect the behavior of the system.

For the reader who is interested in following this problem further we note that

FIG. 3
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existing air cushion vehicles tend to be large; 50 to 70 feet, with low cushion pressures
from 0.2 to 0.4 psi. From the above model and solution we conclude that these
vehicles break ice of any sizeable thickness without the formation of an air cavity. The
distribution of load for such a case is shown in Fig. 2(b). Nevel [2], in a series of three
reports, has studied the bending moments of an ice wedge on an elastic foundation,
and more recently, Carter [1], has applied Nevel's work to uniformly distributed loads
covering an area as large as air cushion vehicles. The development and solution of the
fourth order partial differential equation for the model is beyond the scope of this
classroom note.

FIG. 4
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OPTIMUM DESIGN OF A HYDRAULIC CUSHION UNIT*1

DAVID A. PETERSt

Abstract.1 A mathematical model of a hydraulic cushion unit is used to determine the orifice area
versus displacement that is required to minimize the force of impact between two railroad cars. The orifice
design turns out to be independent of impact velocity but dependent on impacting mass. A suboptimum
design, based on the maximum allowed rail weight, gives minimum force for a large impacting mass and
bounded forces for impacts involving smaller masses.

1. Introduction. Certain types of hydraulic cusion units, of common use in the
railroad industry, Fig. 1, develop a cushioning force, F, that is given by

where c is the cushioning constant (fixed for a given hydraulic fluid), x and v are the
cushion displacement and velocity (v = dx/dt), a(x) is an orifice area which may vary

FIG. 1. Schematic of sliding still cushion unit.

* Received by the editors September 5, 1977.
t Department of Mechanical Engineering, School of Engineering and Applied Science, Washington

University, St. Louis, Missouri 63130.
1 A classroom exercise at the Freshman level.
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with displacement, and xm is the maximum allowable travel given the geometric
constraints [1], The optimum design of such a unit is obtained by choosing a(x) in such
a way that the maximum force is minimized for a given impact of the type shown in
Fig. 2.

FIG. 2. Schematic of cushion unit and orifice design.

An impact is uniquely defined by two parameters: the impacting mass, m, and the
initial velocity, DO. Furthermore, the motion during impact is given by the work energy
formula

Thus, we wish to minimize maxF for the system described by (1) and (2).

2. Optimum orifice area. The critical insight into the solution of this problem is
found from (2) evaluated at the end of impact (v = 0, x = xf) [2]:

(3)

Since the integral on the right hand side is fixed for a given impact (m, u0), it is clear
that the smallest max F is obtained when F maintains a constant value (F = F0) over
the maximum possible travel (xf = xm). It follows immediately from (3) that the
desired force is

The next step in the solution is to determine the velocity behavior of the cushion
unit under this constant force. From (2) and (4) we get

Thus we see that the square of the velocity varies linearly under constant force. Now,
if v varies linearly, then (1) implies that a2 must also vary linearly to provide a
constant F or

The only remaining unknown, do, can be obtained from (1) and (4), i.e.,

Thus, the optimum orifice area has been obtained; and, interestingly, it is not a
function of impact speed.

3. Sub-optimal impacts. The results in (6) and (7) establish that, for a given
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impacting mass, a single orifice design provides optimum cushioning for all impact
speeds. In practice, however, a cushion unit may encounter a variety of impacting
masses. We shall now determine the resulting force when a mass different from the
design mass impacts the cushion unit. For an impacting mass m', the differential of (2)
gives

(8) m'vdv = -c(v2/a1)dx.

The solution follows easily by separation of variables and by use of the initial
condition v = v0&tx = Q:

The force can then be obtained from (1), (6), and (11):

For m'<m, a relatively light impacting mass, the force decreases with x and
reaches zero at maximum travel. For m = m', the force remains constant for all x. For
m'>m, a relatively heavy impacting mass, the force increases without bound as
x -» xm. Therefore, the cushion unit must be designed based on the heaviest expected
impacting mass. This is quite feasible because of regulated limits on maximum rail
weight.

4. Conclusion. A sub-optimal solution to the design problem is obtained by
choosing a linear variation in a2, which is the optimum solution for the greatest
impacting mass. Smaller impacting masses will consequently give a sub-optimal but
bounded cushioning force.
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SLOWEST DESCENT TO THE MOON*

VITTORIO CANTONIt AND AMALIA ERCOLI FINZIt

Abstract. The problem of a soft landing on the moon with minimum fuel consumption can be
successfully dealt with by means of the Maximum Principle [3], [2]. The solution is also a minimum-time
solution. However, the converse problem (descent in maximum time, with a given amount of fuel) is an

* Received by the editors February 16, 1979, and in final revised form February 28, 1980.
t Istituto Matematico dell'Universita, via Saldini 50, Milano, Italy.
t Istituto di Ingegneria Aerospaziale del Politecnico, via Golgi 40, Milano, Italy.
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extreme example of the possible ineffectiveness of the use of the Maximum Principle: indeed every solution
turns out to satisfy Pontryagin's necessary conditions as a singular solution [1]. Actually every solution is
optimal, for it can be shown that the descent time is independent of the control law, provided that the available
fuel is entirely used.

1. Introduction. Suppose a spacecraft crew on a lunar mission, in order to carry out
repairs or collect data, is confronted with the need of protracting for as long as possible
the final stage of the descent to the lunar surface, while disposing of a maximum amount
Ammax of the fuel supply.

Assuming a vertical trajectory, and supposing that at time t0 the height is h0 and the
velocity v0, what is the control law which maximizes the time T required for a soft
landing?

It must of course be assumed that Ammax is greater than the minimum amount of
fuel Ammin required for a soft landing. Moreover the initial data h0 and v0 must be
chosen, for a given maximum thrust of the engine, in such a way that the soft landing is
possible. The appropriate conditions can be read from the exhaustive discussion of the
moon-landing problem with minimum fuel consumption, based on Pontryagin's
Maximum Principle, given in Fleming-Rishel [2, pp. 28-33, 35-37].

Leaving, at first, the performance index and part of the end conditions unspecified,
we recall the mathematical formulation of the type of moon-landing optimization
problem of interest to us, and state the Maximum Principle (§ 2).

Certain specific choices of the performance index and of the complete end
conditions lead to problems with a unique solution actually determinable by means of
the Maximum Principle: this is the case for the minimum fuel consumption problem
referred to above, as well as for the minimum time problem discussed below by way of
illustration (§3).

A completely different situation is exhibited by the attempt to apply the same
technique to our slowest descent problem: any control law compatible with the end
conditions turns out to be a candidate for optimality, so that Pontryagin's necessary
conditions give no information whatever towards the solution of the control problem
(§4).

By means of a first integral of the equations of motion, it can be shown that the
descent time is a nondecreasing function of the amount of fuel consumed. Therefore,
every control law compatible with the required end conditions on position and velocity
is equivalent (and therefore optimal) for our problem, provided that the available fuel is
entirely used (§5).

It is remarked that the two physically distinct performance indices (time and fuel
consumption) are closely related in the maximization as well as in the minimization
problem. In both cases they can be regarded as equivalent, in the sense that they lead to
the same optimal solutions.

2. Soft landing optimization problems and Pontryagin's principle. Denote by v(t)
the velocity and by m (t) the combined mass of the spacecraft and residual fuel at time t.
At time t + dt the velocity is v(t) + dv, the mass is m(t) + dm, while the mass of the
ejected fuel increases by —dm and has absolute velocity v(t) + <r (a = relative ejection
velocity). Equating the infinitesimal change in momentum to the impulse mg dt of the
constant gravity force, one gets:

Hence,
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Let the vertical axis x\ be oriented downwards, with origin on th*e ground, and set:

The rate of ejection per unit time -dm/dt can be controlled, and will be denoted by
«(/). Thus, with this notation, the system equations are:

The maximum thrust of the braking engine is era, so that u(t) is a piecewise
continuous function such that 0 g u(t) § a.

In each of the optimization problems examined here, the end conditions

are imposed, and the performance index to be minimized has the form

When applied to such problems, Pontryagin's Maximum Principle states that with
every optimal solution u*(t), x*(t), it is possible to associate a nonzero solution

w*(f) = (IT* (t), irf (t), TT% (t), TT* (0) of the adjoint system

(initial data),

(soft landing condition),
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such that 7T0SO, and the "Hamiltonian" function

satisfies the relations

and

(6)

at any time.
Moreover, when the final mass x3(ti) is not preassigned, the "transversality

condition" ir3(fi) = 0 must be satisfied.
From (3) one immediately deduces

(7)

where c0, Ci and c2 are constants.

3. The minimum time problem. Fleming and Rishel [2] apply the Maximum
Principle to the minimum fuel consumption problem, corresponding to the per-
formance index / = J£ u(t) dt, i.e., to f(u) = u. Whenever the initial conditions and the
amount of fuel available are compatible with a soft landing, the optimal control law
consists of a final stage of braking with maximum thrust, generally preceded by an initial
stage of free fall.

An analogous treatment can be applied to the minimum time problem, with
performance index / = \',10 dt, f = 1, as we shall now show.

From the Hamiltonian (4), with /= 1, one sees that condition (6) can only be
satisfied by control laws where u = 0 or « = a, whenever the switching function

is respectively positive or negative. If S vanishes over some time interval, one is again
led to the control value u = 0. This can be recognized from condition (5), which then
yields x2 = -(ir2/7n)g - (TTO/TTI), so that on account of (7) dx2/dt = g, to be compared
with the second equation of motion.

The final stage necessarily corresponds to braking (u = a), and since the trans-
versality condition ir$(ti) = 0 must be satisfied, there cannot be a time interval (TI, r2)
with u = 0 preceded and followed by intervals with u ̂  0. In fact, in any time interval in
which u = 0, £3 is constant on account of (1)3 and 773 is constant on account of (3)4, so
that 5 is a linear function of t on account of (7). If the end-points TI and T2 were
switching points, the linear function 5 would have to vanish at TI and r2, and therefore
over the whole interval. But this would imply •n^-c^< 0, as can be seen from condition
(5) for time t\ .l Thus, for TI g t s T2, from S(t) = 0 one would get 7T3(r) > 0, while (3)4

1 In the Hamiltonian, and therefore in (5), TTO must be strictly negative. The possibility TTO = 0 must be
excluded since it would imply 7r2 = 0, as it can be seen from (5) written at time t\, and ir-j = 0 on account of the
assumption 5 = 0. Since we already know that -n\ = 0, the whole vector it would vanish, contrary to one of
Pontryagin's conditions.
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would imply that 773 is always a nondecreasing function of t; but this is incompatible
with the transversality condition ir3(ti) = 0.

This reasoning means that whenever the smooth landing is possible, an optimal
solution in minimum time can either correspond to a constant control law u = a, or to a
control law with a single switch from u = 0 to u = a, exactly as in the minimum fuel
consumption problem.

4. The maximum time problem and Pontryagin's Principle. Let us consider now
the converse problem of the descent in maximum time.

At present we take it for granted that the entire amount of available fuel will have
to be used in order to minimize the performance index, which is now / = -j^1 dt
(/= -1). Thus at time t\ we have the additional condition

In the next section the correctness of this obvious assumption will be formally justified.
The Hamiltonian now becomes

and differs only by a sign from the Hamiltonian of the minimum time problem.
The essential technical difference between the present discussion and the preced-

ing one lies in the end condition (9), which now allows for singular solutions, i.e., for
solutions satisfying Pontryagin's necessary conditions and such that the switching
function is identically zero over some time interval [1, Chap. 6].

Indeed, if the coefficient of u in H is equated to zero, one gets

i.e., recalling (7),

so that

where (1)3 has been taken into account. Replacing in the last equation dmldt with its
expression (3)4, one gets, after simplification, (citr/xs) = 0, so that c\ = 0. Equation (5)
thus becomes

The possibility TTO = 0 must be excluded. In fact, it would imply c2 = 0 and, from
(3)4, diTi/dt = 0, i.e., 7r3 = c3. But on one hand the constant c3 cannot vanish (for this
would imply IT = 0); on the other hand, since (5) now yields H = wc3 = 0, the nonvanish-
ing of c3 would imply u = 0 at any time, which is incompatible with the soft landing
condition.

Now if TTO ^ 0 it can be assumed (by suitable normalization) that TTO = -\, and (12)
yields C2 = -l/g, i.e., 7r2 = -l/g. Inserting this value in (11), we obtain 773 = o-/g;c3,
which is immediately seen to be compatible with (3)4. We can therefore conclude that,
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whatever the actual form of the control law u (t} (and of the related solutions of (1)), the
adjoint vector with components

satisfies all the requirements of Pontryagin's Principle and provides a singular solution
of the problem.

This is an extreme example where no conclusion at all can be drawn from the
application of the Maximum Principle, since for every control u(t} the necessary
conditions of optimality can be satisfied.

5. Solution of the slowest descent problem. Eliminating u from (1)2 and (1)3 we
obtain the relation

and hence the integral

The constant value of this function is immediately determined from the initial data.
Solving (13) with respect to t and setting T = t\ -10 and Am = JC3(f0) ~ *s('i), one

gets

The duration T of the descent is therefore an increasing function of the fuel consumed
Am, independent of u(t) (which can be freely chosen from among the control laws
ensuring the smooth landing conditions).

Thus in order to maximize T, the maximum amount Ammax of fuel available must
be used. Moreover, the descent laws with end conditions (2) and (9), which all satisfy
Pontryagin's necessary conditions (as shown in § 4), are all optimal, since T only
depends on the total amount of fuel used, and not on the distribution of the ejection in
time interval (t0, t0+T).

We conclude by noting that the integral (13) connects the performance indices
\i* u dt - Am and j,̂ 1 dt = T by a relation which explains the identity of the respective
optimal solutions, exhibited in § 3.
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ON EXTREME LENGTH FLIGHT PATHS*

M. S. KLAMKINt

In this note we extend the following problem proposed by M. F. Gardner [1]:
"A swimmer can swim with speed v in still water. He is required to swim for a

given length of time T in a stream whose speed is w < v. If he is also required to
start and finish at the same point, what is the longest path (total arc length) that he
can complete? Assume the path is continuous with piecewise continuous first
derivatives."

It is physically intuitive that the longest and shortest paths must be perpen-
dicular and parallel, respectively, to the velocity of the stream. We generalize and
prove these results by considering an aeroplane flying with a speed v with respect
to ground in a bounded irrotational wind field given by \V-V<p(x, y, z) (and
w = |W|).

If a(t), p(t), y(f) denote the direction angles of the direction of the heading of
the aeroplane at time f, then

The length L of a closed path flown in time T is then given by1

Applying the Schwarz-Buniakowski inequality, we have

(note that jj <p dt = 0 because the path is closed). The upper bound T{v2 - w^in}
1/2

is the best possible, and there exist paths whose length is arbitrarily close to this
bound. These can be achieved by flying in an arbitrary small closed path around a
point where w is least and in a plane perpendicular to W at this minimum point.
For the special case when W is constant, the latter can be achieved by flying in
arbitrary closed paths (satisfying the time constraint) in a plane perpendicular to
W. (To have equality in (1), <p or equivalently £ <px cos a must be constant.)

We now consider the closed path of minimum length in a given time T. Since

* Received by the editors June 1, 1975.
t Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada T6G 2G1.
1 Here and elsewhere, £ denotes a cyclic sum, e.g.,
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(note that £ <Px* = <f>)- The latter lower bound is also the best possible, and there
exist paths whose length is arbitrarily close to this bound. These are achieved by
flying back and forth along an arbitrary small segment containing a point where w
is a maximum and whose direction is parallel to the wind velocity at this maximum
point. For the special case when W is constant, the latter bound can be achieved by
flying back and forth along an arbitrary segment (satisfying the time constraint) in
a direction parallel to the wind velocity.

A related result is that if the aeroplane flies any closed path in a nonconstant
irrotational wind field, the time of flight is greater than the time of flight over the
same path without the wind field [2].

For the two-dimensional case in which W is constant,-both extreme length
paths are up and back segments. It is easy to show that the length of any up and
back segment of the same time duration Tis a monotonic function of the angle the
segment makes with W. (See Fig. 1.)

FIG. 1

The component of v along the path is (v2- w2 sin2 8)l/2. If T, denotes the
time for the downwind flight, then

Whence

or

(note that
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and

A related and more difficult problem for the two-dimensional case with
constant W is Chaplygin's problem [3, pp. 206-208]. Here we want to determine
the closed path one should fly in a given time such that the enclosed area is a
maximum. Using the calculus of variations, it has been shown that the path is an
ellipse whose major axis is perpendicular to W and whose eccentricity is w/v. This
result contains the isoperimetric theorem for circles (just set W = 0). For other
wind field problems, see [4].
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POSTSCRIPT

A simpler complete proof for Chaplygin's problem, using Wulff s construction for the equilibrium shape of crystals,
appears in SIAM J. Math. Anal., 8 (1977), pp. 288-289.

Flight in an Irrotational Wind Field

Problem 61-4, by M. S. KLAMKIN (University of Alberta)
AND D. J. NEWMAN (Temple University).

If an aircraft travels at a constant air speed, and traverses a closed curve in
a horizontal plane (with respect to the ground), the time taken is always less
when there is no wind, then when there is any constant wind. Show that this
result is also valid for any irrotational wind field and any closed curve (the
constant wind case is due to T. H. Matthews, Amer. Math. Monthly, Dec.
1945, Problem 4132).

Solution, by G. W. Veltkamp (Technical University, Eindhoven, Netherlands).
Let the speed of the aircraft (with respect to the air) be 1 and let at any point

of the (oriented) path the tangential and normal components of the velocity of
the wind be u and v, respectively. Then the velocity of the aircraft along its
path is easily seen to be

Of course the desired flight can be performed only if

everywhere along the path. We have to prove that for any closed curve C along
which (2) is satisfied
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unless u =v = 0 everywhere on C. It follows from (1) by some algebra that

Hence (since (2) is assumed to hold) we have everywhere on C

with equality only if u = v = 0. Since the irrotationality of the wind field im-

plies that / uds = 0, the assertion (3) directly follows from (4).
Jc

Solution by the proposers.
If we let
W = wind velocity,

V = actual plane velocity (which is tangential to the path of flight), then
| V — W | is the constant air speed of the airplane (without wind) and will be
taken as unity for convenience.

We now have to show that

By the Schwarz inequality,

Since

and

(1) now follows from (2) and (3).

Flight in an Irrotational Wind Field II

Problem 82-15, by M. S. KLAMKIN (University of Alberta).

It is a known result (see Problem 61-4, SIAM Rev., 4 (1962), p. 155) that if an
aircraft traverses a closed curve at a constant air speed with respect to the wind, the time
taken is always less when there is no wind than when there is any bounded irrotational
wind field.

(i) Show more generally that if t wind field is &W (W bounded and irrotational
and k is a constant), then the time of traverse is a monotonic increasing function of k
(*SO).

(W is irrotational),
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(ii) Let the aircraft be subject to the bounded irrotational wind field W,-, / = 1, 2,
and let 7, denote the time of flight over the same closed path. I f |W, | S, |W2| at every point
of the traverse, does it follow that 7, s T21

Solution by the proposer.
(i) Let the arc length s denote the position of the plane on its path and let w(s), 0(s)

denote, respectively, the speed and the direction of the wind with respect to the tangent
line to the path at position 5. It is assumed that the wind field is continuous and that
1 > kw where the plane's speed is taken as 1. By resolving k W into components along and
normal to the tangent line of the plane's path, the aircraft's ground speed is

and then the time of flight is given by

From Problem 61-4, it is known that T(k) £ T(0) with equality iff A:W = 0. We now
show that T(k) is a strictly convex function of k which implies the desired result.
Differentiating T(k), we get

Then T'(0) = -<fwcosOds = Q since W is irrotational. On differentiating again,
T"(k) > 0 since the integrand consists of positive terms. Thus T(k) is strictly convex (for
W * 0).

(ii) The answer here is negative. Just consider two constant wind fields, both having
the same wind speeds. Since the times of the traverses will in general be different, we
cannot have both 7", £ T2 and T2 £ T,.

A problem related to part (i) is that the aircraft flies the same closed path twice with
the second time around in the reverse direction. All the other conditions of the problem
are the same as before except that the wind field need not be irrotational. Then the total
time of flight is an increasing function of A: (&W ^ 0). In this case if the aircraft only flew
one loop, the time of flight could be less then the time of flight without wind (just consider
a whirlwind). Here the total time of flight is

By the A.M.-G.M. inequality, the sum of the integrands is S2(l - k2w2) l /2 a 2 which
shows that T(k) fe T(0) with equality iff k\V = 0. Then as before T"(k) > 0.

Escape Velocity with Drag

Problem 64-3, by D. J. NEWMAN (Temple University).

If we assume that the frictional force (or drag) retarding a missile is propor-
tional to the density of the air, p ( x } , at altitude x (above the earth) and to the
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square of the velocity, then the differential equation of the motion of the missile
can be written in the form

(after a proper normalization of the constants).
a) Show that escape is not always possible (e.g., if p(x) ^ (2x + 2)~').
b) Find the necessary and sufficient condition on p(x) in order to allow escape.
c) Give an explicit formula for the escape velocity when it exists.
Solution by J. ERNEST WILKINS, JR., (General Dynamics/General Atomic

Div.)
Let v be the velocity x, and let E be the kinetic energy v^/2. Then

so that

where

Suppose that

Then for any positive finite Va, there exists a unique positive finite value £ such
that

The kinetic energy E, and hence the velocity v, vanishes when x — £. Since the
acceleration £ is always negative (the air density p(x) is assumed to be nonnega-
tive) it follows that £ is the maximum value attained by x and that the missile
falls back to earth after reaching the height £.

If, on the other hand, the integral 7 is finite, and the initial velocity F0 is
not less than 71/2, then it follows from (1) that E > 0, and hence that v > 0,
throughout the missile trajectory. It then follows that x —» <*> as t —* °c and the
missile will escape the earth.

We conclude that (a) escape will not occur if p(x) ^ (2x + 2)"1, for in that
case / = co, (b) the fmiteness of the integral / is a necessary and sufficient
condition for escape to occur, and (c) the minimum initial velocity F0 which
the missile must possess in order to escape is 71'2.

Editorial Note: The term P(x}x in the differential equation should have been
kp(x)±\ x since the drag force changes sign with x and also one cannot normalize
all the proportionality constants away.

Morduchow notes that the above analysis has been based on a strictly "ver-
tical" (radial) motion of the missile and raises the question of finding the escape
condition when the initial velocity Vo is not in a radial direction. To answer that
question one would have to consider the following system of equations:
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In connection with this, there are some interesting remarks with regard to the
general effect of a resisting medium on the motion of a comet (e.g., Encke's
Comet) in A Treatise on Dynamics of a Particle, by E. J. Routh, Dover, New
York, 1960, pp. 246-249.

Also, it would be of interest to determine the escape condition in the original
problem if the drag force is replaced by p(x)xn, n > 0. For the special case of
p(x) = k(x + I)"2, we have escape if and only if

This holds for all n g 2. For n > 2, the condition reduces to

A Minimum Time Path

Problem 59-7 (Corrected), by D. J. NEWMAN (Temple University).

Determine the minimal time path of a jet plane from take-off to a given point
in space. We assume the highly idealized situation in which the total energy of
the jet (kinetic + potential + fuel) is constant and, what is reasonable, that
the jet burns fuel at its maximum rate which is also constant. We also assume
that v = y = x = t = 0at take-off which gives

as the energy equation.
Solution by the proposer.

The problem here is to minimize / dt subject to the constraints

Denning tan 7 = y/x = j-, the problem becomes: minimize / dt subject to the
U/X J

constraints

(note: by using 7 instead of x, we obtain a simplification).
The usual Lagrange multiplier technique yields the variational problem:
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{A(00//sin27 + 2gy - at) - Cy cot 7} At.

The resulting Euler equations are

(note: (3) has already been integrated and simplified). Substituting (3) into
(2) yields

and then (3) becomes

From (1) and ( 5 ) , we obtain

which on differentiating gives

Replacing y from (5) into (7) leads to

which on integration is

Since -^ = y — at'2 sin a cos a, x = y' cot 7, we obtain y' and x parametricallv;
dy

where k = —tan 70. Noting that initially x = y = I = 0, 7 = —tan^ k. we can
integrate (8), (9), and (10) to obtain

If 7 (final) and 70 are chosen properly, we can insure that x = X and y = Y
(finally). Then from (16), (17), (18) we have the parametric equations for
the optimal path plus the minimum time of flight.

Minimize
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Editorial note: For more realistic and more complicated minimum time-to-
climb problems, it is very improbable that the variational equations can be
explicity integrated (as in the above equations). In general, it would be more
practical to use the techniques of dynamic programming. In particular, see R. E.
Bellman and S. E. Dreyfus, "Applied Dynamic Programming", Princeton
University Press, New Jersey, 1962, pp. 209-219.

HANGING ROPE OF MINIMUM ELONGATION*

GHASI R. VERMAt AND JOSEPH B. KELLER}:

Abstract. It is shown how to taper a heavy rope, hanging vertically, to minimize the elongation due to its
own weight plus a load at its lower end. Hooke's law is used to determine the elongation, and the calculus of
variations is used to find that taper which minimizes it.

Let a heavy rope (or beam or string or chain) hang vertically from a fixed support
and carry a load of weight W at its lower end. It is stretched elastically by the load and by
its own weight. To minimize its total elongation, we can taper the rope so that its upper
part, which carries the greatest load, is thickest while its lower part which carries the least
load, is thinnest. Its unstretched length L, its volume V, its mass density p, and its elastic
properties are assumed to be given. Thus we can vary only its cross-sectional area
distribution A(x), subject to the volume condition

Here x denotes distance from the upper end in the unstretched state. We seek that area
distribution A(x) satisfying (1) which minimizes the total elongation.

To solve this problem we first determine the downward displacement y(x) of the
point at position x in the unstretched state. We assume that the strain dy(x)/dx is small,
and then Hooke's law of elasticity applies. It states that the strain at each point is
proportional to the stress there. The stress at x is just the total downward force at x
divided by the cross-sectional area at x. Thus Hooke's law yields

In (2) g is the acceleration of gravity and the proportionality factor E, called Young's
modulus, is a characteristic of the rope material. Since the top of the rope is fixed, the
displacement there is zero, soy(0) = 0. The solution of (2) satisfying this condition is

Now we must find A (x) satisfying (1) to minimize y(L).
To take account of (1), we shall minimize XL) ~~ M /o A(x)dx - V], where X is a

Lagrange multiplier. Since the integrand in (3) contains an integral of A, it is convenient

'Received by the editors July 1,1983, and in revised form November 16,1983.
fDepartment of Mathematics, University of Rhode Island, Kingston, Rhode Island 02881.
^Departments of Mathematics and Mechanical Engineering, Stanford University, Stanford, California

94305.
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to let that integral be the unknown function. Thus we introduce B(x) defined by

Then the quantity to be minimized becomes

In order that the last integral in (5) be stationary, with respect to variations in B, B
must satisfy the Euler equation of the calculus of variations, which is

Upon carrying out the differentiations in (6) and simplifying, we obtain

By writing (7) as B"/B' = B'/B and integrating, we get B' = - KB where AT is a constant.
The solution of this equation, which is also the general solution of (6), is

By setting x = L in (8) and in (4), and equating the results, we get B(L) = W/pg. Then
(4) shows that A(x) = -B'(x), so (8) yields

To determine K we substitute (9) into (1) and find that

Then (9) becomes

By our construction, this is the unique function A(x) which satisfies (1) and makes y(L)
stationary. Thus if y(L) has a minimum, this function yields it.

By using (11) in (3) we find

For a uniform rope A = VL ' and the displacement is yu(L) given by

Thus the ratio of the extension of the optimum rope to that of the uniform rope is
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This ratio decreases monotonically as the ratio of the weight of the rope to the load
increases. It is unity at pgVj W = 0 and falls to zero at pgVj W = ».

Substitution of (4) into (2) gives dy/dx in terms of B. Then we use (8) for B to
obtain

This shows that the strain is constant for the optimal rope, and therefore so is the stress.

Paul Bunyan's Washline

Problem 78-17, by J. S. LEW (IBM T. J. Watson Research Center).

It is well known that if a uniform thin flexible cord is suspended freely from its
endpoints in a uniform gravitational field, then the shape of the cord will be an arc of a
catenary. Determine the shape of the cord if we use a very long one which requires the
replacement of the uniform gravitational field approximation by the inverse square
field.

Solution by the proposer.
We may determine a unique plane through the earth's center via the two fixed

supports, and may suppose the required curve in this plane by symmetry arguments.
Introduce polar coordinates (r, 6) in this plane, and locate the origin at the earth's
center. Let i denote the cord arclength, / the constant linear density, U(r) the
gravitational potential, P and Q the fixed supports. Then \P ds is the same for any
admissible curve, and \° lU(r) ds is a minimum for the equilibrium curve. However if
the arclength is constant while the potential energy is either minimal or maximal,
then clearly S \P L d6 = 0, where

Here F is an unknown constant having the dimensions of a force, a Lagrange multiplier
representing the tension in the cord. We might now derive the Euler-Lagrange
equation for this problem,

but we observe its translation-invariance in the variable 0 [1, p. 262], and we obtain a
first integral with no intermediate steps:

Here E has the dimensions of energy, whence E/F has the dimensions of length. Direct
substitution into (3) gives a first-order equation for the unknown curve:
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Moreover we expect a "turning point" on this curve where we achieve minimal or
maximal distance from the origin. Thus we let (r0, 00) be the coordinates of this point,
and we note that dr/dd = 0 at (r0, 00). Evaluating (4) at this point yields a relation among
these unknown constants:

If we introduce the dimensionless quantities

I

then we obtain the differential equation

Recalling the standard formula U(r) = -k/r for a suitable constant k, we can rewrite (7)
as

Setting u = l / p , we can simplify (8) to

We square equation (9) and differentiate the result, cancel the factor 2u' and obtain

Since the solution curve in the original variables has a turning point at (r0, d0), the
corresponding function in these new variables satisfies the conditions

To find the unknown curve we need only solve (10)-(11); to recover the original
variables we need only use (6). The form of the solution depends on the value of -y. The
results are:

Thus the solution is a circular arc for y = 1, a straight line for y — 0, and an elementary
function for all values of y.

Moreover the standard expression for curvature in polar coordinates is

whence the value of this curvature at the turning point is

If y is positive then the solution curve is concave at 60 and the potential energy is
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maximal for this curve. If y is negative then the solution curve is convex at 00 and the
potential is minimal for this curve. Thus the desired solutions have negative y.
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PLATE FAILURE UNDER PRESSURE*

JOSEPH B. KELLERt

Let us consider a flat plate occupying a plane domain P and rigidly supported along
its boundary dP. Let a uniform pressure p act on one of its faces. We suppose that the
plate fails or yields or breaks along a curve if the shear force per unit length along that
curve exceeds a certain constant a. The shear force is just the force normal to the plate
exerted by one part of the plate upon an adjacent part across their common boundary.
What is the largest value of p which can be applied before the plate fails? This question
was considered and solved by Gilbert Strang of MIT [1], [2]. His method, which differs
from that given here, is described at the end of this note.

To answer this question, we consider the balance of forces on any subdomain D of
P, The total force normal to the plate exerted on D by the pressure p is pA, where A is
the area of D. If the plate has not failed, the total opposing force exerted on D by the
surrounding portion of the plate is at most crL, where L is the length of the boundary of
D. Thus if failure has not occurred, we must have

From this equation, we obtain

Failure will occur when this inequality is violated for some subdomain D £ .P. The
largest pressure at which failure will not occur is p*, defined by

Thus to find p* we must determine the minimum value of L/A among all subdomains
D £ p. This is analogous to the isoperimetric problem of maximizing A for fixed L, or
equivalently of minimizing L/A for fixed L. It has been solved for certain general
domains by Steiner [3], and for more specific polygonal domains by DeMar [4] and Lin
[5]. We shall call the subdomain D* which yields the minimum the weakest subdomain
of P. See Fig. 1.

If the boundary dD lies in the interior of P, it follows from the isoperimetric
analogy that D must be a circle of some radius r. Then L = 2irr, A = irr2, and L/A = 2/r,
which is least for the largest possible value of r. However, a still smaller value of L/A
may be obtained if dD is not entirely in the interior of P, but consists of arcs of the
boundary SP and arcs in the interior of P. By geometrical arguments from the calculus of

* Received by the editors May 15, 1979, and in revised form October 4, 1979.
t Departments of Mathematics and Mechanical Engineering, Stanford University, Stanford, California
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FIG. 1. A square domain P with its weakest subdomain D* bounded by four circular arcs and four straight
line segments. The heavy arc DC has the same length as the circular arc BC.

variations, we shall show below that the interior arcs must be arcs of circles with equal
radii which are tangent to dP at their endpoints. Therefore to find the weakest
subdomain bounded by n arcs of dP and n interior arcs, it is necessary to determine the
In endpoints. Thus for each n, the problem of finding p* becomes one of ordinary
calculus, but not necessarily easy, and we shall call its solution p*. Then the value of n
which minimizes/>£ must be found, and finally/;* = minnpn.

As an example, let us suppose that P is a square. Then the minmizing subdomain
D* will have the same symmetry as the square. Therefore its boundary will consist of 4
identical line segments on the 4 sides of dP, joined by 4 identical circular arcs. See Fig. 1.

To prove that each arc of D* in the interior must be a circle, we consider any
sufficiently short segment of it such as BC in Fig. 1. If that segment is not circular, we can
increase A and keep L fixed by replacing the segment by a circular arc with the same
length and the same endpoints. To prove that any two interior arcs of D* must have
equal radii, we interchange a short segment of one with a short segment of the other
having the same chord length, such as BC and EF in Fig. 1. This does not change L or A.
Since the resulting interior arcs must be circles, as we have shown above, the two arcs
must have equal radii. To prove that each interior arc of D* must be tangent to the
boundary, we suppose that some arc is not tangent, but intersects the boundary at an
angle different from IT. Then we cut off from D* a little "triangle" near the intersection
point with a line segment of length e. This will reduce L by a positive amount 0(e) of
order e, and reduce A by an amount of order e2. Thus L/A is changed to [L-
O(e)]/[A-O(e2)] = L/A-O(e) + O(e2), which is less than L/A for e sufficiently
small. Therefore the interior arcs must be tangent to the boundary.

Professor Strang formulated the problem of static deformation on the assumption
that the plate was made of an elastic-plastic material. This formulation involved a
partial differential equation for the displacement of the plate. Then by finding the dual
problem, he was led to study the constrained isoperimetric problem (3).

REFERENCES

[1] GILBERT STRANG, A family of model problems in plasticity, Computing Methods in Applied Sciences
and Engineering, Springer-Verlag Lecture Notes 704, R. Glowinski and J. L. Lions, eds., Springer-
Verlag, New York, 1979, 292-308.

[2] , A minimax problem in plasticity theory, Functional Analysis Methods in Numerical Analysis,
Springer-Verlag Lecture Notes, 701, M. Z. Nashed, ed., Springer-Verlag, New York, 1979.

[3] J. STEINER, Sur le maximum et le minimum des figures dans le plan, sur le sphere, et dans Vesplace en
general, I and II, J. Reine Angew. Math. (Crelle), 24 (1842), pp. 93-152, 189-250.

[4] R. F. DEMAR, A simple approach to isoperimetric problems in the plane, Math. Mag., 48 (1975), pp. 1-12.
[5] T. P. LIN, Maximum area under constraint, Ibid., 50 (1977), pp. 32-34.



58 SUPPLEMENTARY REFERENCES

Supplementary References
Mechanics

[1] R. N. ARNOLD AND L. MAUNDER, Gyrodynamics and its Engineering Applications, Academic, London, 1961.
[2] K. L. ARORA AND N. X. VINH, "Maximum range of ballistic missiles ,"SIAM Rev. (1965) pp. 544-550.
[3] C. D. BAKER AND J. J. HART, "Maximum range of a projectile in a vacuum," Amer. J. Phys. (1955) pp. 253-255.
[4] R. M. L. BAKER, JR. AND M. W. MAKEMSON, An Introduction to Astrodynamics, Academic, N.Y., 1967.
[5] S. BANACH, Mechanics, Hafner, N.Y., 1951.
[6] R. R. BATE, D. D. MUELLER AND J. E. WHITE, Fundamentals of Astrodynamics, Dover, N.Y., 1971.
[7] D. C. BENSON, "An elementary solution of the brachistochrone problem " AMM (1969) pp. 890-894.
[8] A. BERNHART, "Curves of general pursuit "Sctipto Math. (1959) pp. 189-206.
[9] , "Curves of purser,"Scripta Math. (1954) pp. 125-141.

[10] , "Curves of pursuit" Scripta Math. (1957) pp. 49-65.
[11] , "Polygons of pursuit," Scripta Math. (1959) pp. 23-50.
[12] L. BUTZERANDA. D. WHEELON, "Maximum range of a projectile in vacuum on a spherical earth," Amer. J. Phys.

(1957) pp. 21-24.
[13] R. L. BORRELLI, C. S. COLEMAN AND D. D. HoBSON, "Foe'spendulum," MM (1985) pp. 78-83.
[14] B. BRADEN, "Design of an oscillating sprinkler," MM (1985) 29-38.
[15] F. BRAUER, "The nonlinear simple pendulum "AMM (1972) pp. 348-354.
[16] M. N. BREARLY, "Motorcycle long jump," Math. Gaz. (1981) pp. 167-171.
[17] W. BURGER, "The yo-yo: A toy flywheel," Amer. Sci. (1984) pp. 137-142.
[18] D. N. BURGHES, "Optimum staging of multistage rockets "Int. J. Math. Educ. Sci. Tech. (1974) pp. 3-10.
[19] D. N. BURGHES AND A. M. DOWNS, Modern Introduction to Classical Mechanics and Control, Honvood, Chichester,

1975.
[20] W. E. BYERLY, An Introduction to the Use of Generalized Coordinates in Mechanics and Physics, Dover, N.Y., 1944.
[21] A. C. CLARKE, Interplanetary Flight, An Introduction to Astronautics, Harper, N.Y.
[22] J. M. A. DANBY, Fundamentals of Celestial Mechanics, Macmillan, N.Y., 1962.
[23] D. E. DAYKIN, "The bicycle problem," MM (1972) p. 1 (also see (1973) pp. 161-162).
[24] R. W. FLYNN, "Spacecraft navigation and relativity," Amer. J. Phys. (1985) pp. 113-119.
[25] G. GKNJH, Kinetic Energy Storage. Theory and Practice of Advanced Flywheel Systems, l$\Merv/otih$, Boston, 1985.
[26] H. GOLDSTEIN, Classical Mechanics, Addison-Wesley, Reading, 1953.
[27] A. GREY, A Treatise on Gyrostatics and Rotational Motion, Dover, N.Y, 1959.
[28] B. HALPERN, "The robot and the rabbit-a pursuit problem" MAM (1969) pp. 140-144.
[29] V. G. HART, "The law of the Greek catapult ,"BIMA (1982) pp. 58-63.
[30] M. S. KLAMKIN, "Dynamics: Putting the shot, throwing the javelin," UMAP J. (1985) pp. 3-18.
[31] , "Moving axes and the principle of the complementary function ,"SIAM Review (1974) pp. 295-302.
[32] , "On a chainomatic analytical balance," AMM (1955) pp. 117-118.
[33] , "On some problems in gravitational attraction," MM (1968) pp. 130-132.
[34] M. S. KLAMKIN AND D. J. NEWMAN, "Cylic pursuit or the three bugs problem," AMM (1971) pp. 631-638.
[35] , "Flying in a wind field I, II," AMM (1969) pp. 16-22, 1013-1018.
[36] , "On some inverse problems in potential theory," Quart. Appl. Math. (1968) pp. 277-280.
[37] , "On some inverse problems in dynamics," Quart. Appl. Math. (1968) pp. 281-283.
[38] J. M. J. KOOY AND J. W. H. UYENBOGAART, Ballistics of the Future, Stam, Haarlem.
[39] C. LANCZOS, The Variational Principles of Mechanics, University of Toronto Press, Toronto, 1949.
[40] D. F. LAWDEN, "Minimal rocket trajectories," Amer. Rocket Soc. (1953) pp. 360-367.
[41] , Optimal Trajectories for Space Navigation, Butterworths, London, 1963.
[42] , "Orbital transfer via tangential ellipses"}. Brit. Interplanetary Soc. (1952) pp. 278-289.
[43] J. E. LITTLEWOOD, "Adventures in ballistics,"BIMA (1974) pp. 323-328.
[44] S. L. LONEY, Dynamics of a Particle and of Rigid Bodies, Cambridge University Press, Cambridge, 1939.
[45] W. F. OSGOOD, Mechanics, Dover, N.Y., 1965.
[46] W. M. PICKERING AND D. M. BURLEY, "The oscillation of a simple castor'EIMA (1977) pp. 47-50.
[47] H. PRESTON-THOMAS, "Interorbital transport techniques,"]. Brit. Interplanetary Soc. (1952) pp. 173-193.
[48] D. G. MEDLEY, An Introduction to Mechanics and Modelling, Heinemann, London, 1982.
[49] A. MIELE, Flight Mechanics I, Theory of Flight Paths, Addison-Wesley, Reading, 1962.
[50] N. MINORSKY, Introduction to Nonlinear Mechanics, Edwards, Ann Arbor, 1946.
[51] F. R. MOULTON, An Introduction to Celestial Mechanics, Macmillan, N.Y., 1962.
[52] , Methods in Exterior Ballistics, Dover, N.Y, 1962.
[53] A. S. RAMSEY, Dynamics I, H, Cambridge University Press, Cambridge, 1946.
[54] R. M. ROSENBERG, "On Newton's law of gravitation," Amer. J. Phys. (1972) pp. 975-978.



MECHANICS 59

[55] L. I. SEDOV, Similarity and Dimensional Methods in Mechanics, Academic, N.Y., 1959.
[56] M. J. SEWELL, "Mechanical demonstration of buckling and branching,"BIMA (1983) pp. 61-66.
[57] D. B. SHAFFER, "Maximum range of a projectile in a vacuum," Amer. J. Phys. (1956) pp. 585-586.
[58] S. K. STEIN, "Kepler's second law and the speed of a planet," AMM (1967) pp. 1246-1248.
[59] J. J. STOKER, Nonlinear Vibrations, Interscience, New York, 1950.
[60] J. L. SYNGE ANDB. A. GRIFFITH, Principles of Mechanics, McGraw-Hill, N.Y., 1959.
[61] J. L. SYNGE, "Problems in mechanics," AMM (1948) pp. 22-24.
[62] H. S. TSIEN, "Take-offfrom satellite orbit," Amer. Rocket Soc. (1953) pp. 233-236.
[63] W. G. UNRUH, Instability in automobile braking," Amer. J. Phys. (1984) pp. 903-908.
[64] P. VAN DE KAMP, Elements ofAstwmechanics, Freeman, San Francisco, 1964.
[65] J. WALKER, "The amateur scientist: In which simple questions show whether a knot will hold or slip'Sci. Amer.

(1983) pp. 120-128.
[66J L. B. WILLIAM, "Fly around a circle in the wind," AMM (1971) pp. 1122-1125.
[67] E. T. WHITTAKER, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, Dover, N.Y., 1944.
[68] C. WRATTEN, "Solution of a conjecture concerning air resistance "MM (1984) pp. 225-228.
[69] W. WRIGLEY, W. M. HOLLISTER AND W. G. DENHARD, Gyroscopic Theory, Design and Instrumentation, M.I.T.

Press, Cambridge, 1969.
[70] J. ZEITLIN, "Rope strength under dynamic loads: The mountain climber's surprise," MM (1978) pp. 109-111.



2. Heat Transfer and Diffusion

THE TEMPERATURE DISTRIBUTION WITHIN A HEMISPHERE
EXPOSED TO A HOT GAS STREAM*

L. M. CHIAPPETTAt AND D. R. SOBELf

Abstract. The temperature distribution in the spherical tip of a gas sampling probe is obtained. The
boundary condition representing the flux of heat from a hot gas stream to the tip is of the mixed
Dirichlet-Neumann type. This solution is expressed as a series of Legendre polynomials.

Introduction. The purpose of this Classroom Note is to present the solution to the
steady-state heat conduction problem representing a hemisphere whose flat surface is
maintained at a constant temperature while the curved surface is exposed to a gaseous
stream maintained at a second constant temperature. This solution was obtained during a
thermal integrity study of the tip region of a combustion-gas sampling probe.

Problem description. A schematic diagram of a combustion-gas sampling probe is
shown in Fig. 1. A small sample of the gas to be analyzed is admitted through the center of
the probe tip. The curved surface of the tip is exposed to the hot combustion gas while the
flat, downstream surface is maintained at essentially constant temperature by water
impingement cooling. It is known that the heat flux on the interior wall of the
hemispherical tip, i.e., the surface exposed to the gas sample, is negligible compared with
that on the curved upstream and flat downstream surfaces. Therefore, the simplified
physical model shown in Fig. 2 was used in the development of an approximate solution
for the temperature distribution in the probe tip region.

FlG. 1. Combustion-gas sampling probe.

FIG. 2. Physical model of tip region.

'Received by the editors November 15, 1983, and in revised form January 15, 1984.
fUnited Technologies Research Center, East Hartford, Connecticut 06108.
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The physical model shown in Fig. 2 can be represented mathematically by the heat
conduction equation in spherical coordinates with axial symmetry, i.e.,

and the associated boundary conditions, viz.,

where Tc is the coolant temperature,

and

where the heat transfer coefficient, h, the thermal conductivity k and the gas temperature
Tc are known. These equations, after the substitutions z = cos 6 and «(/•, z) =
T(r, z) 7",, become

Application of the method of separation of variables yields

where Pn(Z) represents the Legendre polynomial of order «. Equation (6) represents a
solution of (1), (2) and (3). The constants Cm can be determined by satisfying the
boundary condition, (4), as follows:

Substitution of (6) into (4) yields

Letting
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we have

Since the Legendre polynomials form a complete set of orthogonal functions,

It follows that

and

which, along with (6), represents a solution of (1) through (4), thereby permitting the
temperature distribution within the hemispherical probe tip to be calculated.

POST-FURNACE DRAWDOWN OF GLASS FIBER*

J. A. LEWISt

Abstract. Fiber for optical waveguide is commonly made by drawing from a softened glass billet in a
furnace. Here we calculate the small secondary drawdown which occurs after the hot fiber leaves the
furnace. We model the fiber as a viscous, heat-transferring fluid under uniaxial tension. Use of the rapid
variation of viscosity with temperature, typical of glasses, allows a simplification giving the maximum
allowable fiber exit temperature explicitly in a wide variety of cases.

1. The model. Glass fiber for optical waveguide is commonly made by feeding a
carefully fabricated glass billet (the so-called "preform") into a tube furnace where it
is softened and drawn into fiber, as shown schematically in Fig. 1. As in most glass
forming processes, the rapid change of viscosity with temperature prevents any
appreciable drawdown after the fiber leaves the furnace. Nevertheless, for fiber guide
even this small secondary drawdown is of interest.

We estimate this drawndown by modeling the fiber as a viscous, incompressible
fluid with a free surface. (See [1] for a general discussion of glass viscosity and [2] for
the fused silica used for fiber guides.) For a fiber of slowly varying radius a ( z ) the fiber
velocity v ( z ) , axial stress t z z ( z ) , and fiber temperature T ( z ) satisfy the equations

* Received by the editors November 1, 1977, and in final revised form April 21, 1978.
t Bell Laboratories, Murray Hill, New Jersey 07974.
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(2)

(3)

F = TTO. rrz = const.,

tra vc dT/dz = —2iraH,

where Q is the volume flux, F the draw force, constant when fluid inertia and surface
tension are neglected, c the heat capacity per unit volume, H the surface cooling rate,
and axial heat conduction is neglected. (See § 3.)

FURNACE

FIG. 1 Fiber drawing.

Now the axial stress fzz and radial stress ?„, which must vanish in a fiber with its
surface free and its radius slowly varying, are given in general by the relations

for pressure p, viscosity ju, = /j.(T), and radial velocity u. With v = v ( z ) the continuity
equation

implies that

so that

With trr = Q , p = ~/u. dv/dz, and

(3/u, is the viscous analogue of the Young's modulus 3G for an incompressible elastic
medium with shear modulus G.) Elimination of v and tzz then yields the pair of
equations for the free surface r = a(z) and fiber temperature T(z)

strongly nonlinear because /j, is a rapidly varying function of T, typically of the form
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with /30 » 1. On the other hand, they are autonomous, H typically having the form

giving the combined effect of radiation and convection. Thus, we finally obtain

giving a = a(T), with the initial condition at the furnace exit

2. Radiative cooling. For radiative cooling H = Hr(T), (9) gives

Furthermore, with H, ~ T4, the change of variable

reduces the integral to elementary form. However, we shall not make use of this
special result. Instead we note that, with ju~exp(0), the integrand is exponentially
small for large 0. Only for & «j80 is there an appreciable contribution to the integral.
In this range, however,

so that, for /?0 » 1, to a first approximation,

where

This is the desired result, giving the radius change during post-furnace cooling. It is
obviously valid for any slowly varying function H,(T). It is a simple exercise to show
that it is also valid for the cooling rate given by (8), provided that both Hr(T) and
HC(T) are slowly varying and Aa « ao-

3. An example. Figure 2 shows the relative radius change A = Aa/a0 as a
function of fiber exit temperature TQ for a silica fiber, with ao = 50 /xm, F = 10 dyne,
c = 0.6 cal/cm3-°C,

(see [2]), and radiative cooling, with

Drawdown increases rapidly with increasing exit temperature T0. For T0> 2250°K, the
exit viscosity /u0 is too small to support the given draw force F and no steady state exists
(A>1).

Direct experimental confirmation of this result is lacking, because of the difficulty
of measuring T0 and a0 during the drawing process. However, numerical solution of
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FlC. 2. Secondary drawdown as a function of fiber exit temperatures.

(1) to (4) in the furnace, using crudely measured values of furnace heating rate—H f in
place of H, gives a fiber profile a = a ( z ) which agrees well with a measured profile
"frozen" by severing the fiber at the takeup end and rapidly withdrawing it from the
furnace. It also gives a value of fiber exit temperature T0 consistent with the observed
small secondary drawdown.

Finally, to estimate the effect of axial conduction, we differentiate (6) and use (5)
to obtain (Tra2Kd2T/dz2)/(cQ dT/dz) = -(k/v)(F/(6fj,Q) + SvaH/(cQT)). For thermal
diffusivity k = K/c ~ 10~2 cal/sec-cm-°C and t>~102 cm/sec, k/v~lO~4cm, while
both the drawing length 6/uQ/F and the cooling length SiraH/icQT) are a few
centimeters. Thus, except in a tiny region near 2=0 , where a conduction boundary
layer must be inserted to make dT/dz continuous, axial conduction is negligible.

REFERENCES

[1J G. W. MOREY, The Properties of Glass, Reinhold, New York, 2nd ed., 1954.
[2] J. F. BACON, A. A. HASAPIS AND J. W. WHOLLEY, JR., Viscosity and density of molten silica and high

silica content glasses, Tech. Rep. RAD-TR-9(7)-59-35, AVCO Corp., Wilmington, MA.

A BUNDLING PROBLEM*

M. L. GLASSERf AND S. G. DAVISONt

It is a primeval observation of most warm blooded creatures that by huddling
together they can keep each other warm. However, most of the work on this
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phenomenon appears to be experimental. In this note, we wish to present a
calculation which applies, e.g., to the case of armadillos.

To simplify the situation as much as possible without losing sight of the
essentials, we shall consider sleeping armadillos as uniform spherical heat sources
and the earth in which they imbed themselves as homogeneous and infinitely
extended. Thus we consider two spherical constant temperature heat sources, of
the same (unit) radius, at temperature T=T0 above that of an infinite medium of
uniform thermal diffusivity, in which they are embedded. We shall determine, in
the steady state, the amount of heat given off by either of them as a function of
the distance la between their centers.

In the steady state, we have

with T= To on either sphere. We introduce a system of bispherical coordinates
[1, p. 1298].

with scale parameter c = (a2 -1)1/2. Then the spheres are the coordinate surfaces
77 = ±Tj!, with cosh rji = a. The general solution of Laplace's equation, which is
even in 17 and independent of <p, is

By noting the generating formula for the Legendre polynomials in the form

we see that the temperature distribution is given by

We require the heat flux from one of the spheres, given by

where K is a constant whose value depends on the set of units used and n is the
outward normal to the sphere. In the present case, n = ?„ so



HEAT TRANSFER AND DIFFUSION 67

The series in (6) are easily evaluated by using (3) and the expansion

The angular integrations required are elementary and, after some simplification,
we find

The quantity 171 can be eliminated by means of the relation cosh 171 = a, so
alternatively, we have

where Uk (a) is the reciprocal of the Chebyshev polynomial of the second kind
[2, Chap. 22]. The first term of (9) is precisely the result for an isolated sphere

The remainder of the series, which is negative, represents the effect of the second
sphere and shows that its presence, no matter how remote, reduces the heat
output of the first sphere. Physical intuition suggests that Q(a) should increase
steadily from the value (?(!) = 47ri<T0 In 2 to the value Q0 as the distance between
the spheres increases. This is supported by a numerical calculation which shows

TABLE 1

a

1.00
1.01
1.02
1.03
1.04
1.05

1.1
1.2
1.3
1.4
1.5

QM/QO

0.693147
0.694849
0.695882
0.697725
0.699207
0.700629

0.707721
0.721281
0.734090
0.745882
0.757311

a

2.0
2.5
3.0

4.0
5.0

10.0
20.0
30.0
40.0
50.0

Q(aV00

0.802656
0.834407
0.857699

0.990113
0.909184

0.952381
0.975610
0.983611
0.987656
0.990100
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that the series in (8) is rapidly convergent even for values as small as a = 1.01. It
was with some surprise that we were unable to find a mathematical proof of the
monotonic increase of Q(a) for a > 1 which is an interesting open problem [3].
The numerical calculation (see Table 1) supports the empirical result that the
greatest warming effect occurs for tangency. Since Q(l)/(?(co)=ln2, the heat
output of each sphere is reduced by nearly a third. The extension of this
calculation to three (or more) spheres should be valuable in the study of Armadillo
colonies.
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Steady-State Plasma Arc

Problem 60-6*, by JERRY Yos (AVCO Research and Advanced Development Division).

In studying the positive column of an electric arc, a model is considered in
which the arc strikes between two plane electrodes in an infinite channel. The
sides of the channel are held at a fixed temperature T = 0 and are perfect elec-
trical insulators. The electrodes are held at fixed potentials and are perfect
thermal insulators (Fig. 1). The steady-state distributions of temperature and
electrical potential in the arc are then determined by the equations for the con-

FlGlTHE 1
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servation of current and for the energy balance between the electrical heating of
the gas and the cooling due to thermal conduction to the walls, i.e.

are the electrical and thermal conductivities of the gas, respectively. The
boundary conditions at the electrodes are

The boundary conditions at the walls of the channel are

One solution of this problem can be readily found in the form

where T ( y ) is determined implicitly from

and where the maximum temperature Tm is given by

A Free Boundary Problem

Problem 60-7, by CHRIS SHERMAN (AVCO Research and Advanced Development Division).

In analyzing the phenomena occurring in the column of an electric arc operat-
ing with forced convection, a set of coupled partial differential equations involv-
ing the dependent variables J, E (electric current density and field strength),
U, p (velocity and pressure of the gas stream), and T (gas temperature) arises
(see Problem 60-6). This set may be reduced to a single equation by the follow-
ing drastic simplifying assumptions: U is taken to be a constant directed along
the x-axis of a rectangular coordinate system, E a constant directed along the
2-axis, and T is assumed to be a function of x and y only. J is related to E by
J = tr(T)E where a(T), the electrical conductivity, is a known function of tem-
perature. The equation which results is the conservation of energy equation

Is this solution unique?
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where a and b are constants. If

where c and 77
0 are known constants, a solution of equation (1) which includes

the determination of the shape of the boundary separating regions 1 and 2 is
sought. The boundary conditions to be satisfied are

1. the separating boundary B passes through the point (x0, 0),
2. T and dT/dn are continuous across B,
3. T bounded,
4. limV^72-» T = 0.

The following questions are of particular interest:

(a) Does a stable solution exist?
(b) If it does, is the solution unique?
(c) Is the separating boundary B closed?

A similar alternative but simpler problem in which

is also of interest.

Ohmic Heating

Problem 69-11, by J. A. LEWIS (Bell Telephone Laboratories).

Consider an isotropic, homogeneous, conducting body, ohmically heated by
the passage of direct current between perfectly conducting electrodes on its surface,
the rest of the surface being electrically and thermally insulated. Show that the
maximum temperature in the body depends only on the potential difference
between the electrodes, the electrode temperature, and the electrical and thermal
conductivities, in general functions of the temperature, and is independent of the
size and shape of the body and of the electrode configuration.

Solution by the proposer.
The potential V and temperature T in a body with electrical and thermal

conductivities a(T), k(T) satisfy the equations

and the boundary conditions on the electrodes

while on the insulated surface,
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One may verify by direct substitution that the pair of functions V, T( V] satisfy
the equations and boundary conditions provided that T(V) is given by

The maximum temperature, obtained by differentiation with respect to K, is given
by

which is the desired result.
Editorial note. The result is also valid if the boundary condition T = T0 on

S0 + Sj is extended to

It still follows easily that the pair of functions V, T(V) satisfy (1) and the boundary
conditions.

The maximum temperature, obtained by differentiation of the right-hand
side of (2)' (or by completing the square), occurs when V = a + (V0 + V,)/2 and
is now given by

where

again giving the desired result.
Since V0 g V g Fl7 the previous equation for Tmax is only valid if la < V\ - V0.

If la ^ K! - K0, then 7max = T: and occurs on the boundary S,. A similar
argument applies for the case T, < T0. [M.S.K.]

A Heat Transfer Problem

Problem 70-23, by J. ERNEST WILKINS, JR. (Howard University).

Solve the partial differential equation

Assuming that we replace (2) by
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subject to the boundary condition

which describes the temperature distribution T in an infinitely long, uniformly
heated rod of radius a and thermal conductivity k, when the heat transfer co-
efficient ,i varies around its mean value /i0 over the circumference in such a manner
that

for some nonzero integer n and some number E such that 0 < E < 1.

Solution by G. W. VELTKAMP (Technological University, Eindhoven, Nether-
lands) .

Since T = -qr2/(4k) is a solution of the inhomogeneous differential equation,
we assume that the full solution can be represented as

(where the ' indicates that the term with; = 0 should be taken half). This "ansatz"
is motivated by separation of variables together with the regularity condition at
r = 0 and the observation that the mode-coupling mechanism constituted by the
boundary condition will not excitate other modes than those present in (1).

We write the boundary condition as

where

Substitution of (1) into (2) gives

Equating coefficients of cosjnO gives

Comparing the difference equation (4) with the recurrence relation for the Bessel
functions, and observing that convergence of (1) at r = a implies boundedness of
the Cj, we find

Substitution into (3) gives
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It is well known that J'v(z) ^ 0 for 0 < |z| < v. Hence the condition 0 < e < 1
ensures that ./(,(/.) = J'v(£v) is different from zero. Therefore the solution is

A Steady-State Temperature

Problem 62-1, by ALAN L. TRITTER (Data Processing Inc.)
AND A. I. MLAVSKY (Tyco, Inc.).

Consider the steady-state temperature (T(r, z ) ) distribution boundary-value
problem for an infinite solid bounded by two parallel planes:

(all the parameters involved are constants). Determine the temperature at the
point r = z = 0.

The solutions by E. DEUTSCH (Institute of Mathematics, Bucharest, Rumania),
THOMAS ROGGE (Iowa State University), J. ERNEST WILKINS JR. (General
Dynamics Corporation) and M. S. KLAMKIN (University of Buffalo) were
essentially the same and are given by the following:

Letting

it follows by integration by parts that the Hankel transform of Eq. (1) is

subject to the boundary conditions

Consequently,

* H. T. Davis, Introduction to Nonlinear Differential and Integral Equations, U. S. Atomic
Energy Commission, 1960, pp. 405-407.

where
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Inverting the latter transform:

On letting H —> », we obtain

which corresponds to a result given in Carslaw and Jaeger, Conduction of Heat
in Solids, Oxford University Press, London, 1959, p. 215.

In particular, the temperature at r = 0, z = 0, is given by

The series expansion

is obtained by expanding tanh \H into the exponential series

and employing the integral

(Watson, Theory of Bessel Functions, Cambridge University Press, London,
1952, p. 386).

Deutsch also obtains the alternate series expansion

This latter expansion is suitable for numerical calculations for large values of
the parameter R/H. It shows that limit//^ T(0, 0) = 0 which is what one would
expect physically. It also implies that

For small values of R/H, Wilkins expanded

into powers of X using the binomial theorem. The coefficients depend on the
Zeta function f(2m +1) . In particular,



HEAT TRANSFER AND DIFFUSION 75

By a superposition integral, we can also find the temperature distribution
from ( 2 ) for the more general flux condition

Amos also gives the following series expansion for T(r, z ) :

where \n = (2n — l)ir/2H. This reduces to (5) for r = z = 0.
For extensions of this problem to the unsteady-state in finite or infinite

cylinders see Unsteady Heal Transfer into a Cylinder Subject to a Space- and Time-
Vai'ijing Surface Flux, by M. S. Klamkin, Tr-2-58-5, AVCO Research and Ad-
vanced Development Division, May, 1958.

Steady-State Diffusion-Convection

Problem 60-1, by G. H. F. GARDNER (Gulf Research & Development Company).

When a homogeneous fluid flows through a porous material, such as sandstone
or packings of small particles, its molecules are scattered by the combined action
of molecular diffusion and convective mixing. Thus a sphere of tagged fluid
particles expands as it moves and its deformation may be resolved into the longi-
tudinal and transverse component. The transverse mixing, which is many times
less than the longitudinal mixing, has been investigated at turbulent rates of
flow but has received little attention when the flow rate is low as for subter-
ranean fluid movement. The following experiment was set up to investigate
transverse mixing at low flow rates.

A rectangular porous block with impermeable sides was mounted with one
side horizontal. An impermeable horizontal barrier AB divided the block into
equal parts for about one-third of its length. One fluid was pumped at a constant
rate into the block above AB and another was pumped at an equal rate below
AB. After passing B the fluids mingled and a steady-state distribution was
attained.

The fluids have approximately equal densities and the heavier was flowed under
AB so that the equilibrium would be stable.
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The steady-state distribution of the fluids is assumed to be given by

where S(x, y) denotes the fractional amount of the lower fluid present at the
point (x, y ) . The equation was obtained under the following assumptions (for
an analogous problem, see H. Bateman, Partial Differential Equations, p. 343):

(1) Streamline motion and molecular diffusion cause the dispersion.
(2) The coefficient a reflects the dispersion of flow caused by velocity varia-

tions along each streamline and molecular diffusion in the direction
of flow.

(3) The coefficient (3 reflects the dispersion perpendicular to the direction of
flow caused by diffusion between steamlines.

The boundary conditions to be satisfied are

Solve equation (1) for an infinite medium. Here boundary condition (a) is
replaced by

Solution by (he proposer.

The use of parabolic coordinates (£, ?j) instead of rectangular coordinates
(x, y) is more appropriate because the semi-infinite boundary y = 0, x < 0 is
simply given by y = 0. Thus, writing

the differential equation is transformed to

and the boundary conditions become

If we now assume that S is a function of £ only and is independent of rj, equa-
tion (3) reduces to

on the impermeable boundaries,

and
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The general solution of equation (4) may be written

Boundary condition (a") is obviously satisfied. Conditions (b') and (c') can be
satisfied by choosing the constants A and B appropriately. Hence the required
solution may be written,

The curves of constant concentration are given by constant values of £ and
therefore are parabolas confocal with the end of the barrier.

One simple result is perhaps noteworthy. The vertical concentration gradient
at points on the z-axis is given by

It is independent of a and hence gives a convenient way of measuring 0 experi-
mentally.

Generalization of the solution for an infinite medium, given by equation (6),
to certain bounded regions is easily accomplished by use of the method of images.

Resistance of a Cut-Out Right Circular Cylinder

Problem 62-4, by ALAN L. TRITTER (Data Processing, Inc.).

Determine the resistance of the cut-out right circular cylinder (Fig. I ) be-
tween the two perfectly conducting cylindrical electrodes i'i and E-2. All elec-
trical properties are assumed to be constant and the two small circles of radius
r are orthogonal to the large circle of radius R.

Solution by D. E. AMOS (Sandia Corporation).
The potential problem for the interior region bounded by the three circles

can be solved by conformal mapping. We assign the potentials V = 0 and V = Va
to the arcs of E\ and E-,, respectively, which border this region. Since it is assumed
that the remainder of the conductor is insulated on its surface, dV/dn = 0 on
the arcs of the center circle between ~E\ and £'2 . The transformation is constructed
by noticing that the points labeled b + R = ar and 6 — R = r /ar (Fig. 2)
are images of one another in circles EI and E2, where

We, therefore, form the transformation by adding logarithmic potentials of
opposite signs, and normalize so that the image of E\. is on the imaginary axis.
Thus, we verify that

and
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FIG. 1

FIG. 2

is the required transformation which takes the two-dimensional problem in the
z plane into a one-dimensional problem in the w plane.



HEAT TRANSFER AND DIFFUSION 79

Therefore, the image of L\ is OH the imaginary axis, it = 0.
Image of E%, (x — 26)" + y~ = r":

Therefore, the image of Ei is on the line u = hi I/a".
Image of E:i, (x — !>)' + y~ = R2:

For y > 0, v —> —ir/2 as a point interior to E3 approaches the boundary of Es .
For y < 0, v —> +ir/2 as a point interior to E3 approaches the boundary of E-i.
Therefore, the image of the upper arc is on the line v = — ir/2 and the image

of the lower arc is on the line v ~ +vr/2.
The solution of the problem in the w plane is

and the total current in a cylinder of conductivity /; and height H is

Finally, the resistance between EI and E-> becomes

THE MONITORING OF AIRBORNE DUST AND GRIT*

A. W. BUSHt, M. CROSS* AND R. D. GIBSON§

Abstract. The collection efficiency of a dust gauge is analysed using the inviscid theory of
hydrodynamics. The classical methods of conformal mapping and the Milne-Thomson circle theorem

* Received by the editors November 25, 1975.
t Department of Mathematics and Statistics, Teesside Polytechnic, Cleveland, England.
t British Steel Corporation Research Laboratory, Middlesbrough, Cleveland, England.
§ Department of Mathematics and Statistics, Teesside Polytechnic, Cleveland, England.

Image of
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are used to obtain the airflow around the dust gauge. Then, using the Stokes drag equations, the dust
particle paths are found. The variaticin of the collection efficiency of the gauge with particle size is
obtained and used to determine the true dust particle size distribution from an experimental
distribution.

For a number of years, dust gauges have been used to monitor the deposition
of dust from industrial chimneys (Lucas and Moore [2]; [1]). An obvious feature of
dust pollution which causes complaint is the fouling of objects at ground level so
that surfaces which would otherwise be clean and bright are masked by a film of
dust.

As a dusty airstream passes around an object, the bulk of the dust, especially
if it is fine, is carried around the object with the airstream, but some of the dust
reaches the object by inertia. The dust from a modern plant has typically a
free-falling speed of 0.3 m • s"1 and is carried by the wind at a speed which is on
the average 5 m • s~\ Its path is therefore very nearly horizontal. For this reason,
the collecting orifice of certain gauges (see, for example, Lucas and Moore [2] and
Fig. 1) is a vertical slit in a vertical cylinder. Such a gauge is not 100 percent
effective in collecting dust which is moving in its direction, and its collection
efficiency will be greater for coarser particles and less for finer particles, the finer
particles being swept around the gauge without leaving the airstream. Further-
more, the collection efficiency of the gauge is dependent on the wind direction. It
will be maximum when the wind is blowing straight into the opening and will fall to
zero as the wind direction swings through a right angle in either direction. Here we
examine a simple theoretical model of the flow past the gauge and examine the
variation of collection efficiency with particle and wind characteristics.

The airflow past the gauge is modeled by considering the horizontal irrota-
tional motion of an incompressible fluid past an infinite vertical cylinder of radius
a with a vertical slit subtending an angle ITT-4a at the center. Boundary-layer
effects and those due to the ends of the gauge are ignored. In the z-plane, where
2 = x + iy, the gauge has cross section, C say, which consists of the circular arc
z = a e'" (-2a<6<+2a). Now the conformal relation

transforms the domain outside the circle \Z\ = a in the Z-plane into the domain
outside Cin the z-plane (Milne-Thomson [3, p. 207]). Simplifying (1), we obtain

where the positive sign in (2) applies if both \z\ > a and x > -cos a; otherwise the
negative sign applies. Also, at infinity, z tends to Z sin a. In the Z-plane
(Z = X+iY), the complex potential, w, for the flow of a uniform stream with
speed Vsina inclined at an angle /3 to the negative X-axis past the cylinder
\Z\-a is



HEAT TRANSFER AND DIFFUSION 81

FIG. 1. The dust gauge and collection jar

FIG. 2. The streamlines for a = 7r/3 andf) = 0
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(Milne-Thomson [3, (3), p. 158]). The stream function (/> = Im (w) can be found
from (3) and streamlines in the cases a = ir/3, /3 = 0 and vr/4 are plotted in Figs. 2
and 3, respectively. Furthermore if v = (vx, vy) is the fluid velocity, then

The trajectory equation for a particle's path depends only on inertia forces and the
drag due to the movement relative to the airflow. For the size range of particles of
interest here (i.e., those whose effective diameter, d, is less than 100 microns) the
Reynolds number is small. Thus we assume that the drag on the particle is the
Stokes drag and the trajectory equation is

where r = (x, y), t is time, ft is the viscosity of air and p is the particle density.
Substituting for v from (4) into (5) and integrating numerically gives the

particle paths for various wind directions and particle diameters (see Figs. 4 and
5). We have taken the particle density to be the density of water; clearly from (5),

FIG. 3. The streamlines for a = ir/3 and /3 = ir/4
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varying p is equivalent to varying d2. Figure 4 shows the outermost paths a particle
may take and still be captured, and we let y be the perpendicular distance between
these paths. Clearly y provides a measure of how efficiently the particles are
captured. If the motion is rectilinear (i.e., uninfluenced by the fluid streamlines)
then y = la sin 2a cos /?. We define the collection efficiency, 8, by

and Fig. 6 is a plot of S as a function of /3 and d. As d -> 0, the particles stay with the
airstream and S -»0. As d increases, the particles are less influenced by the
airstream, and S -» cos /? as d -> oo.

The variation of collection efficiency with particle size can be used to
determine the true distribution of particles from an experimental distribution of
particles. In Fig. 7, we plot an assumed experimental distribution of particles and
the corresponding true distributions for wind speeds of 10 m • s"1 and ] 00 m • s"1

in the case j3 = 0. These results show how important the collection efficiency factor
is, especially for small particles, and low wind speeds.

FIG. 4. The panicle paths in the case a = 0.1 m, d = 40 microns and airspeed = 10 m • s ' (/3 -0)
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Fto. 5. Tlie particle paths in the case a = 0.1 m, d - 57 microns and airspeed = 10 m • s~l (f) = Tr/4)

FIG. 6. The variation of the collection efficiency, f>, with particle size, d, for ft = 0 and Tr/4
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FIG. 7. An assumed experimental distribution of particles ̂  and the corresponding true distribu-
tions for wind speeds of 10 m - s"1 ( ) and 100 m • s"1
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DESIGN OF AN ASYMMETRIC IDEAL CASCADE
FOR ISOTOPE ENRICHMENT*

G. GELDENHUYSt

Abstract. Linear algebra can be used in the design of asymmetric cascades for isotope enrichment.

1. Introduction. Natural uranium contains approximately 0.71% of the light U
isotope. The rest is mainly the heavier " U isotope with traces of other isotopes such as
234U. The 235U isotope is used in nuclear reactors. Enrichment is required to increase

* Received by the editors March 17, 1978.
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the presence of 235U in uranium, which is used in the form of the gas uranium
hexafluoride (UF6) in certain processes.

It is useful to have definitions of the composition of a mixture of two gases, A and
B. The mass fraction XA of gas A is the ratio between the mass of A and the total mass of
the mixture. The mass fraction X\ of the light 235U isotope in natural uranium is
approximately 0.0071. This fraction should be approximately 0.03 for use in nuclear
reactors. The mass ratio RA of gas A is the ratio of the mass of A to the mass of B in the
mixture, and RA = XA/(\-XA). The composition of two mixtures of A and B is the
same if they have the same values of XA (or RA).

Large-scale uranium enrichment is done in a cascade which consists of a large
number of interconnected stages. Each stage is a parallel connection of similar
separating elements, the size of the stage being proportional to the number of elements it
contains. The function of an element or a stage is to separate a feed stream containing
235U and 238U into an enriched stream with a higher mass ratio for 235U and a depleted
stream with a lower mass ratio for 235U. In the present state of the art the enrichment
achieved in a single stage is very small, so that a series connection of hundreds of stages
must be used to achieve meaningful enrichment.

A typical stage i with its input and output streams is illustrated in Fig. 1, in which
the following symbols are used. G'0, G\ and G'h denote respectively the mass flow of
uranium in the feed, enriched and depleted streams of stage i. The mass flows are
measured in kg/s. R'o, R\ and Rh(X'0> X\ andX' h ) denote respectively the mass ratios
(mass fractions) of 235U in the feed, enriched and depleted streams of stage i. We follow
the convention that the stages are numbered consecutively from 1 onwards so that i > /
if Xl >X\. The use of the subscripts / and h is explained by the fact that the enriched
stream contains more of the lighter isotope 235U and the depleted stream more of the
heavier isotope 238U than the feed stream.

FIG. 1. Stage i of a cascade.

2. Separation factors. The separation factor between two streams containing 235U
and 238U is defined as the ratio between the mass ratios of the desired isotope 235U in the
two streams. The separation factor between the enriched stream and the feed stream of
stage / is a,0 = R'i/R'o, between the depleted and the feed streams is ah0 = R'h/R'0, and
between the enriched and depleted streams is alh = R\/R'h = am/ah0. We regard these
three separation factors as constants for a particular cascade. The value of alo is only
slightly larger than 1 and the value of ah0 only slightly less than 1, so that

3. Conservation equations. The mass of uranium (mass of 235U) entering stage /
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must equal the total mass of uranium (total mass of 235U) leaving stage i. The
corresponding equations are

The mass flow ratio /a; of stage i is denned as the ratio between the mass flows of
uranium in the enriched and depleted streams, i.e.,

If we use the relations G\ = mGl
h and GO = G\ + G'h = (1 + Hi)G'h in (2b) we can derive

the equation

The definitions of the separation factors a to and ath and the mass ratio R can be used to
express X'0 and X'h in terms of X\, as follows:

The last three equations can be combined to yield the equation

In a cascade X\ increases with increasing stage number z. This, taken together with (1)
and (4), implies that /u, increases with increasing /.

4. The interconnection of stages in a cascade. The systematic interconnection of
the stages of a cascade can be done as follows. The enriched stream from stage r is taken
forwards to stage r •*- i for further enrichment. As r increases, the depleted stream from
stage r contains more of the desired isotope. Rather than letting the depleted stream

FIG. 2. Arrangement for a (2, 1) cascade.
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from stage r go to waste, it is taken backwards to stage r-j for further enrichment. The
numbers / and / are constants for a given cascade, and the cascade is called an (/, /)
cascade. We shall consider a (2,1) cascade, as shown in Fig. 2.

The positions in the cascade where the most highly enriched streams are removed
are called the product ends of the cascade. The position where the worst depleted stream
is removed is called the waste end. Somewhere between these extreme points is the feed
point, where natural uranium is fed into the cascade. The portion of the cascade from the
feed point to the product ends is called the enricher. The portion to the left of the feed
point is called the stripper. The purpose of the enricher is to make product of the desired
grade and that of the stripper is to reduce the amount of feed required to make a given
amount of product.

We shall consider the static behavior of a cascade, in which the isotopic composi-
tions of the various streams do not change in time. The design of such a cascade
involves, amongst other things, the determination of the total number n of stages in the
cascade, the number m of stages in the stripper, and the mass ratio of 235U as well as the
mass flow in every stream of the cascade. The known quantities are the separation factor
«(0, the mass ratio RP of 235U and the mass flow GF in the feed stream at the feed point,
the mass ratio Rw of 235U at the waste end, and, for a (2,1) cascade, the desired mass
ratios RPi and Rn of 235U at the two product ends. Note that, for example, Rw = RH,
R"~l = Rp2 and R" = RPl.

A very important design consideration is that enrichment work that has already
been done should not be destroyed. This implies that the isotopic composition of
streams that are mixed should be the same. If this is true for the entire cascade, it is
called an ideal cascade. For stage i +1 of an ideal (2,1) cascade the requirement is that

If /3 = a/o, it can be shown that (5) leads to the equations alh = )33/2,

and Rpi = 0~1/2RPi. Since Rw and f3 are known, it follows from (6) and (5) that the
isotopic composition of all the streams in the cascade can be determined. Since RPi and
RF are also known, (6) can be used to compute the total number of stages in the cascade,
to the nearest integer,

The total number m of stages in the stripper can be calculated in the same way.
Furthermore, since the isotopic compositions of all the streams are known, the mass
flow ratio p.t for each stage i can be calculated.

5. A mathematical model of mass flows. An ideal (1,1) cascade is called symmetric
because, if ato is only slightly larger than 1 and the mass fraction of 23SU in the streams is
small, a stage will separate a feed stream into enriched and depleted streams of
approximately equal mass flows, i.e., /u, = 1 throughout the cascade. The theory of
symmetric cascades is well known and its mass flows can be determined in closed form
[4]. Recently there has been renewed interest in ideal asymmetric cascades, in which the
mass flow ratios differ significantly from 1 (see [1], [3], [6]). Asymmetric cascades are
usually (/, /) cascades with / ?* /. For an ideal (2,1) cascade with a(0 only slightly larger
than 1 and small mass fractions of 235U in the streams, /it, = j throughout the cascade.
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We now show that the calculation of the mass flows in a (2,1) cascade can be
reduced to the solution of a system of linear equations. Similar results apply to other
asymmetric (/, /) cascades. We concentrate on the calculation of the various G'h. Once
these are known, the known values of the ̂ t can be used to calculate the G] from (3) and
the Go from (2a).

From the conservation of the mass flow of uranium in stages 1, 2, and 3 we have

For stage j(3 g i ̂  n -1) we have

where Su = 1 if / = / and Si,, = 0 i f i ^ / . Note that G\ = GP2 iii = n~\.
So far we have not used the conservation equations for the 235U isotope. As an

alternative we follow a suggestion in [6] and use equation (3) to transform equations (7)
to (10) to the following n equations for the determination of the n mass flows G\, G2

h,
G n

. h-

These equations can be written in the matrix form AGh = c, where Gh is a column vector
with the required mass flows as components, where the column vector c contains only
one nonzero component, and where the matrix A is shown in Fig. 3.

Since the mass flow ratio //, is positive and increases with increasing i, the matrix A
is strictly diagonally dominant1 and therefore nonsingular [5, p. 23], so that there exists
a unique solution for the mass flows in the streams.

6. The numerical calculation of mass flows. Because of the large number of stages
in a practical cascade and the very real danger of error propagation, a numerical method
for the solution of the final system of equations in the previous section should be chosen
with care. Of course, the special banded structure of the matrix A can be used to
advantage. If we use the techniques in [2, p. 56] we can show that Gauss-Jordan
elimination of the system of equations is equivalent to a decomposition of the matrix A
into matrix factors L and U, that the decomposition can be achieved by a simple and
stable recursion, and that forward elimination and back substitution can then be done
economically and in a stable manner, even for large n.

The numerical analysis indicated above and the actual design of a large asymmetric
cascade for isotope enrichment should be valuable exercises for students who are

1 An n x n matrix A = [a,/] is strictly diagonally dominant if
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FIG. 3. The matrix A.

interested in the application of linear algebra. The study of asymmetric («', /') cascades
also provides insight into the reasons for the entirely new arrangement described in [1]
for cascades with small mass flow ratios.
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3. Traffic Flow

Malevolent Traffic Lights

Problem 82-16, by J. C. LAGARIAS (Bell Laboratories, Murray Hill, NJ).

Can the red-green pattern of traffic lights separate two cars, originally bumper-
to-bumper, by an arbitrary distance? We suppose that:

(1) Two cars travel up a semi-infinite street with traffic lights set at one block
intervals. Car 1 starts up the street at time 0 and car 2 at time t0 > 0.

(2) Both cars travel at a constant speed 1 when in motion. Cars halt instantly at any
intersection with a red light, and accelerate instantly to full speed when the light turns
green. If the car has entered an intersection as the light turns red, it does not stop.

(3) Each light cycles periodically, alternately red and green with red time j^, green
time Ay and initial phase 0, (i.e., phase at time 0) at intersection j.

Can one define triplets (Ay, /t,-, 0y) (j = 1, 2, • • •) so that {(A,, Hj):j = 1, 2, • • •} is a
finite set and so that car 1 gets arbitrarily far ahead of car 2?

Solution by O. P. LOSSERS (Eindhoven University of Technology, Eindhoven, The
Netherlands).
The answer is yes as we shall now prove. We consider two types of traffic lights

(I) A = M = a/2> (II) A = ju = 6/2, where a and b are chosen in such a way that a/b is
irrational. The phases of the lights are chosen in such a way that the first car never has to
stop. This is easily accomplished. However, we can manipulate more with the phases.
Suppose that the second car arrives at a light of type I with a delay of ra + 0 seconds
(/•£ TV, 0 < 6 < a). The phase is chosen in such a way that the light changes l/2@ seconds
after car 1 passes. So the delay of car 2 increases to (r + '/2)a + %6, If we had only used
lights of type I the delay would monotonically increase to (r + \)a. A similar statement is
true for lights of type II. At each intersection we still have the choice of the type of light.
We choose this type in such a way that the increase is maximal. Since a/b is irrational, no
multiple of a is a multiple of b and the time delay will tend to «=.

Editorial note. The proposer shows that if all the cycle times are commensurable
then any two cars remain within a bounded distance of each other, no matter how the
lights are specified. [C.C.R.]

AVERAGE DISTANCES IN I, DISKS*

C. K. WONG AND KAI-CHING CHUt

Abstract. In traffic flow studies as well as computer mass storage problems, two quantities of
interest are the average distance between any two points in a certain region and that between any point
and a fixed point of the region. In this note the regions are assumed to be lp disks with uniform
distribution of locations. For p = 1, 2, we have the street traffic flow problem. For p = oo, we have the
computer mass storage problem.

* Received by the editors February 2, 1976.
t TBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598.
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1. The model. In [1], [2], [4] and the references therein, a common model for
studying urban street traffic is represented by a circular city uniformly inhabited
with distance measured either by the rectilinear metric or the Euclidean
metric, i.e., from point (u, v) to point (x, y), the distance can be calculated as
\x - u | + \y - v | or ((x - u )2 + (y - v)2)1/2. The quantities of interest are the average
distance between any two points and that between any point and a fixed location in
the city.

Recently, in a study of computer mass storage [3], [5], the above quantities
came up naturally but in a different setting. The storage system can be represented
by the lattice points (x, y) in a plane where x, y are integers and -N^x, y^N.N
is usually very large. At each lattice point, a file of records is stored. These files are
accessed by an electromechanical fetching mechanism which has equal and
constant moving speeds along the x-axis and the y-axis. Suppose the fetching
mechanism moves from point (u, v) to point (x, y); then the path it takes consists
of two segments: a straight line at 45° to the x-axis followed by either a horizontal
or a vertical line segment. (See Fig. 1.) The time it takes to complete the journey is
therefore proportional to max (|jc - u\, \y -v\). To see this, assume without loss of
generality that u = v = 0, y >x >0. Then the path consists of two line segments:
one at 45° and of length v2x; the other being vertical and of length y - x. If the
speed in the horizontal and vertical directions is S, then the diagonal movement
has speed v 25. The total time is therefore

Depending on the actual system installation, two kinds of operations to
access a sequence of files are available: (i) after accessing a file, the fetching
mechanism moves directly to the location of the next file; (ii) after accessing a file,
the fetching mechanism always returns to the center of the storage system, i.e.,
point (0,0). The choice of the specific access operation depends on the expected
time between the arrivals of consecutive access requests as well as other system
requirements.

If we assume every file is equally likely to be accessed, the quantity of interest
in case (i) is the average distance between any two lattice points in the (27V +1) x

FIG. 1
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(2JV+1) square, since it is a measure of the average time spent between two
consecutive accesses. For case (ii), the quantity of interest is the average distance
from any lattice point to the center.

Interestingly, the traffic flow problem [1], [2], [4] and the above-mentioned
computer mass storage problem can all be put in a unified mathematical
framework as will be seen in the next section.

2. The lp metric. Let £ = (u, v) and 17 = (x, y) be any two points in a plane Q.
For p = 1, 2, • • • , define

and for p = <x>, define

As is well-known, dp and d^ are indeed metrics and can be defined on the
n-dimensional generalization R" of Q = R2.

Let Dp be the unit lp disk, 1 gp goo, i.e.

where 0 is the point (0,0) in Q. Clearly, D^ is a diamond with edge Vz, D2 is a
circular disk with radius 1, and D^, is a square with edge 2.

Define dp(£) as the average distance between any point in Dp and point £, and
dp as the average distance between any two points in Dp. Clearly, assuming
uniform distribution of points,

where A(DP) is the Euclidean area of Dp.
Cases p = 1, 2 correspond to traffic flow problems in diamond-shaped cities

and circular cities. Case p = oo corresponds to'the mass storage problem, with the
square £>«> serving as a continuous approximation to the discrete set of points
(x/N, y/N) with x and y integers, —N^x, y=N, and integer N very large.

3. Results. In this section, we shall compute Ji(£), Joo(£), <?i, 3«>, and dp(0),
for all 1 ̂  p ^ oo. 52 is given as 128/(45 17) (=.9054) in [1], [2], and d2(£) is given in
[4] as certain elliptic integrals of £.

To compute Ji(u, v), where (u, v) = £, we first compute Jj(u, v) for («, u) G
AI = {(«, u)|OSi u, v ̂  1}. By definition of the /i metric and (4),

As A (Di) - 2, we have
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Similarly,

Substituting (7) and (8) into (6), we have for any (u, v)eDl,

(9) di(u,v) = l+u2 + v2-l(\u\3+\v\3).

The minimum is Ji(0, 0) = |, the maximum is Jx(± 1, 0) = J^O, ± 1) = |.
For the overall average, by symmetry,

Next we shall derive d^u, v) and show that d\ = <?„. For this purpose, we define a
mapping / from D^ to D1 by rotating Dx through —ir/4, and then shrinking it
around the origin by a factor 1/V2 (see Fig. 2), It can be shown that every point
(jc, y) in Do, is mapped to (x' = (y + x)/2, y' = (y-x)/2) in Dt, creating a one-to-
one correspondence between the points of D0 and those of D,.

Let £, TJ be any two points in Dx. Let the line segment joining £ 17 have length
a and form an angle 0 § 6 with the jt-axis. We shall assume 6 ̂  -rr/4. Other cases

FIG. 2
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can be dealt with by symmetry, d^, 17) = a cos 6. Let £' = /(£), £' = f(r)). Then,

Let £ = (M, t?), 17 = (jc, y) be points in £>«>, and let their images be g' = (u', »'),
V = (*'»/); then K' = (i> + «)/2, v' = (v-u)/2, and

The minimum is doo(0, 0) = |; the maximum is d<x>(±l, ±1) = |. Further,

Joo can also be computed directly in many different ways. The following is a simple
one based on probability arguments. Let (x, y), (u, v) be any points in £><„. By the
assumption of uniform distribution of points in D&, we have the density functions
PX (0 = Py (0 = Pu (t) = pv (t) = 1/2, -1 ̂  t ̂  1. It follows that

By symmetry,

Thus,
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As for general dp, it is difficult to obtain a closed-form formula for it.
However, by the usual continuity arguments, one can show that dp -»• d^ = |f as
pn»oo. Finally, we shall prove that Jp(0) = | for all l^pgoo. For OSr^l , let
Dp(r) = {-n\-n<=Q and dp(0, t?)gr}. Thus DP(\) = DP. Let A(D_(r)) denote the
Euclidean area of Dp(r). It can be shown that A(Dp(r)) = Kpr , where Kp is a
constant depending on p only. In particular, A(DP) = Kp. It follows that

It should be pointed out that J. S. Lew proved a more general result: in
n-dimensional space, the average distance from a point in the unit lp ball to the
center is n/(n +1) for all p.

REFERENCES

[1] H. G. ApSiMON, Mathematical note 2754: A repeated integral, Math. Gaz., 42 (1958), p. 52.
[2] F. GAR WOOD AND J. C. TANNER, Mathematical note 2800: On note 2 754—A repeated integral,

Ibid., 42 (1958), pp. 292-293.
[3] R. M. KARP, A. C. MCKELLAR AND C. K. WONG, Near-optimal solutions to a 2-dimensional

placement problem, SIAM J. Comput., 4 (1975), pp. 271-286.
[4] J. S. LEW, J. C. FRAUENTHAL AND N. KEYFITZ, On the average distances in a circular disc, this

Review, to appear.
[5] P. C. YUE AND C. K. WONG, Near-optimal heuristics for the 2-dimensional storage assignment

problem, Internat. J. Comput. Information Sci., 4 (1975), pp. 281-294.

ON THE AVERAGE DISTANCES IN A CIRCULAR DISC*

JOHN S. LEWi, JAMES C. FRAUENTHALi AND NATHAN KEYFITZ§

Abstract. Using the lp notion of distance in the Cartesian plane, and assuming a uniform density of
locations on 9 circular disc, we consider the resulting distance to any specified point of this domain, and we
determine the first two moments of this random variable for p = 1, 2, oo. We find the maxima and minima of
these average distances and their ratios, hence show their almost exact proportionality over the disc.
Situations motivating these results include traffic flow on a rectangular street grid in a circular city and
physical design of certain computer systems in two dimensions.

1. Introduction. A common model for urban transportation is traffic flow in a
circular city. Various authors (Smeed [16], Smeed and Jeffcoate [17], Fairthorne [5],
Tan [18], Einhorn [4], Holroyd [11], Pearce [13]) assume a disc city with either a
rectangular or a polar street grid, consider travel distances along either grid or

* Received by the editors May 19, 1975, and in revised form January 27, 1977.
t Mathematical Sciences Department, IBM T. J. Watson Research Center, Yorktown Heights, New

York 10598.
t Department of Applied Mathematics and Statistics, State University of New York at Stony Brook,

Stony Brook, New York 11790.
§ Center for Population Studies, Harvard University, Cambridge, Massachusetts 02138.
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straight-line paths, obtain double averages over both initial and final points, then
essay policy conclusions for both real and hypothetical cities. However, the average
distance from a fixed point has received somewhat less attention in this literature
(Haight [7], Witzgall [21]). The physical design of a computer generates optimal
placement problems in two dimensions which involve similar average distances from a
given point (Hanan and Kurtzberg [10], Karp, McKellar and Wong [12], Wong and
Chu [22]). Often the appropriate distance for such problems becomes the maximum
absolute value of the coordinate differences, while uniform distributions on the
relevant domains yield important results for any further analysis, and circular
domains, in many cases, provide a close approximation to the optimal shapes.

Certain recent models of disc cities involve some radial dependence for the
population density, but cited empirical data on such densities give no clear indication
of the functional form (Pearce [13]). Moreover, a probability density, in the contexts
of these models, may represent the spatial distribution of other entities, such as fires,
workplaces, or accidents. Thus a uniform density offers at least a universal first
approximation, and the ultimate issues may demand only broad geometrical assertions
(Plattner [14]). Hence we suppose, for concreteness, that a circular city of given radius
has a fine rectangular grid of streets; and we require, for simplicity, that the pro-
bability distribution of the relevant locations is uniform on the disc: we assume, in
other words, that the probability measure of any Borel set is proportional to its area.
We choose an arbitrary point in this circular disc, consider its /" distance to a random
location, and calculate the first two distance moments for p = l,2, oo. This yields
properties of the average distances, and their ratios, which determine maxima and
minima on the disc. The almost exact proportionality of these averages is a notewor-
thy consequence of this work.

We introduce a system (x, y) of rectangular coordinates, and define an associated
pair (i, j) of unit vectors, with the origin located at the disc center and the axes parallel
to the street grid. Our unit of length will be the radius of the city, whence the disc city
will have a representation

and a location in any area dx dy will have a probability of dx dy/tr. From an arbitary
point (u, v) in these coordinates to a random point (x, y) with uniform distribution, the
/" distance for lSp<oo is {\u-xp+ t;-y|p}1/p, so that its wth moment, for n =
l , 2 , - - - , i s

and the /°° distance, as usual, is max (\u— x\, \v-y\), so that its nth moment, in the
same way, is

The obvious symmetries of (1.2) and (1.3) yield



TRAFFIC FLOW 99

For any real number </r we recall the vector function

and for our generic points we define the further representations

We use the polar coordinates for (u, v) to express the rotational average of ae
n\

If we rotate the point (u, v) onto the positive x-axis, then we do not change the
average a2

n(u, v) in the Euclidean sense, so that

where q2 = u2 + v2. However if p ^ 2 then a"n(u, v) is not rotation-invariant. The
variance of the I" distance is a2(«, v)-[a"i(u, v)]2 by a standard identity. Thus we
shall investigate the distance moments for n = 1, 2; and we can evaluate the resulting
integrals for p = 1, 2, oo. However if, for any real s, t, we recall the identity

and if, in definition (1.3), we substitute the variables

then directly, by (1.9), we obtain the reduction

Hence our study of these moments requires no further mention of «"(«, v).
Moreover, our calculated average for the rectangular distance will yield the

corresponding result for a nonorthogonal street grid. If ei, e2 are unit vectors parallel
to the grid directions, then k = (et xe2)/|eiXe2 | is a unit vector perpendicular to the
disc, and e* = e2xk, e* = kxe1 are unit vectors orthogonal respectively to e2, ej.
Moreover, these vectors satisfy

where the grid directions define the angle a, and the average distance becomes
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Fairthorne [5], for example, considers a triangular grid of streets.

2. Rectangular distance. For 0 ̂  t ̂  1 we define the function

and by direct calculation we obtain its derivative

Moreover f1/2<arcsin tl/2 for positive f, whence

Thus f'(t) is strictly decreasing on [0, 1], but is positive by (2.2); whereas f(t) is strictly
increasing by this remark, and is positive by (2.1). The terms in (2.1) have standard
expansions about the origin, which yield a corresponding series for f(t):

The symbol F in this relation is a hypergeometric function of t (Abramowitz and
Stegun [1, eq. (15.1.1)]), so that (2.4) offers an analytic continuation to complex t. The
coefficient of tm is O(m~7/2)for large m (Abramowitz and Stegun [1, eq. (6.1.47)]), so
that (2.4) provides an absolutely convergent series for |f|g 1. Hence /(/), despite its
definition (2.1), has no singularity at the origin.

Now we apply relation (1.9) to evaluate an auxiliary integral:

Then definition (1.2) and this integral imply
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Next we introduce polar coordinates (r, 9) to evaluate a second integral:

Also we define Q = D D first quadrant to abbreviate our notation, and we invoke
relation (1.9) to evaluate a third integral:

Thus definition (1.2) and these integrals imply

The gradient of a\ (u, v) has the form

inside the disc D. This gradient has an obvious zero at the origin, but has a positive
radial component elsehwere in the disc; indeed/'(w2),/'(t>2)>0, whence

Also the gradient, by the symmetry of relation (2.10), has a precisely radial direction
either on the coordinate axes or on the bisectors u ± v = 0. However, the gradient,
except on these lines, has an angular component towards the nearest bisector. In
proving this assertion, we may recall the symmetries (1.4) and impose the restrictions
0 < u < u < 1; then
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is positive under these assumptions, since f ( t ) is decreasing for 0 ̂  t ̂  1.
Thus the function a\(u, v), restricted to any circle u2 + v2 = q2, assumes its

minima on the coordinate axes, and assumes its maxima on the two bisectors.
Specifically, the minimum value on the disc boundary is

while the maximum value on the disc boundary is

Therefore the absolute maximum on the disc is (2.14), whereas the absolute minimum
on the disc is

We now define s and t/f by

given any ui + v\ = qe((j>) and xi + y j = re(<£ + 6) in the disc D. If q and r are constants
in some calculation then s and ip are determined by 0; indeed

by the law of cosines. We introduce the auxiliary function

and evaluate its rotational average

We can use identity (2.19) to connect two averages (1.7):

Hence a byproduct of the later result (3.2) is the boundary average of a\ (u, v):

Smeed and Jeffcoate [17], via (2.20), evaluate (2.21) in the same way, and
Fairthorne [5], via (2.20), calculates the average over (u, v):
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Also Haight [7] obtains (2.13), but these authors do not treat the remaining possi-
bilities.

3. Euclidean distance. We now consider the average of the Euclidean distance:
we need only calculate b\(q), by the rotational invariance. We first determine its
extrema on the disc; our gradient analysis shows that a\ (u, v) is strictly increasing in
all radial directions, whence relation (2.20) shows that b\(q) is strictly increasing on
[0, 1]. Geometric intuition might perhaps suggest using polar coordinates about the
disc center, but angular integration will then produce elliptic integrals of the second
kind (Fairthorne [5]). Instead we translate the origin to (q, 0) and we take polar
coordinates (s, i/0 about this point). Clearly if q = 0, so that (u, v) is at the disc center,
then

while if q = 1, so that (u, v) is on the disc boundary, then

Hence (3.1) and (3.2), by these remarks, are the minimum and maximum on the disc.
If q is an arbitrary number in [0, 1] and (s(i//), i/f) is an arbitrary point on the disc

boundary, then the law of cosines asserts

and the proper choice of signs implies

However, odd powers of cos i/> have zero mean, whence the required average on the
disc satisfies

However we produce no change in the value of (3.5) when we decrease its integrand
by the derivative of any 2-7r-periodic function, while we observe
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by direct calculation. If we subtract that multiple of (3.6) which eliminates the sin4 i/f
term in (3.5), then we obtain

where respectively K(m) and E(m) are complete elliptic integrals of the first and
second kind (Abramowitz and Stegun [1, § 17.3]).

Haight [7] derives (3.2) in the same way, while Witzgall [21] obtains both (3.7)
and its analogue for external (u, v). An ingenious argument via elementary functions
(Whitworth [20, Exercise 696], ApSimon [2], Garwood and Tanner [6]) yields the
additional average over (u, v):

and the factor 4/7r from (2.20) then provides the corresponding average in (2.22)
(Fairthorne [5]). Various authors (Deltheil [3, pp. 114-120], Hammersley [8], Watson
[19], Schweitzer [15], Wyler [23]) calculate higher moments for two random points;
moreover the first two consider higher dimensions, while the last two generalize the
external average, and Hammersley [9] cites a biological application of such results.
We shall not repeat these calculations, but, recalling the integral (2.7), we obtain the
desired second moment:

Some partially numerical results of Karp, McKellar and Wong [12] suggest an
almost exact proportionality among the averages ap\(u, v). Hence, on the disc D, we
consider the ratio a\(u, v)/al(u, v), or equivalently, by (2.20), we study the ratio
a\(u, v)/b\(q). The rotational minimum, average, and maximum of a\(u, v) satisfy
respectively
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by (2.4) and (2.6). All three series, for \q\ s 1, are absolutely convergent; the first two
terms in each expansion are respectively identical; only these terms in each expansion
are ever positive. Thus, in particular,

and, by monotonicity,

Not only do the three preceding functions, by our gradient analysis, take positive
values in the stated order, but also their consecutive differences, in the same order, are
power series of positive terms. This follows respectively from the inequalities

for m = 2, 3, • • • , which follow immediately by induction from the case m = 1. There-
fore

strictly increasing function,

strictly increasing function.

However (d/dq) log [q4/b\ (q)] is strictly positive for Q^q < 1, since

by (3.14). Hence the differences (3.16), even multiplied by \/(Trb\(q)), remain strictly
increasing functions on [0, 1], and assume their maxima on the disc boundary.
However the ratio a\(u, v)/b\ (q) is unity at the origin, whereas

Clearly (3.18) and (3.19), by these arguments, are the minimum and maximum of
a\(u, v)/b\(q), whence

by (2.20), are the minimum and maximum of a\(u, v)/a*(u, v). Thus the ratio is
indeed very nearly constant.

Acknowledgment. The authors wish to thank the referee for several suggestions
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106 SUPPLEMENTARY REFERENCES

REFERENCES

[1] M. ABRAMOWITZ AND I. A. STEGUN, Handbook of Mathematical Functions, U.S. Government
Printing Office, Washington, DC, 1964.

[2] H. G. APSIMON, Mathematical note 2754: A repeated integral, Math. Gaz., 42 (1958), p. 52.
[3] R. DELTHEIL, Probabilites Geometriques, Traite du Calcul des Probabilites et de ses Applications, Tome

II, Fascicule II, Gauthier-Villars, Paris, 1926.
[4] S. J. EINHORN, Polar vs. rectangular road networks, Operations Res., 35 (1967), pp. 546-548.
[5] D. FAIRTHORNE, The distance between pairs of points in towns of simple geometrical shapes, Pro-

ceedings of the Second International Symposium on the Theory of Road Traffic Flow, London
1963, J. Almond, ed., Organisation for Economic Co-operation and Development, Paris, 1965,
pp. 391-406.

[6] F. GARWOOD AND J. C. TANNER, Mathematical note 2800: On note 2754—A repeated integral,
Math. Gaz., 42 (1958), pp. 292-293,

[7] F. A. HAIGHT, Some probability distributions associated with commuter travel in a homogeneous
circular city, Operations Res., 12 (1964), pp. 964-975.

[8] J. M. HAMMERSLEY, The distribution of distance in a hypersphere, Ann. Math. Statist., 21 (1950), pp.
447-452.

[9] , Mathematical note 2936: On note 2871, Math. Gaz., 44 (1960), pp. 287-288.
[10] M. HANAN AND J. M. KURTZBERG, A review of the placement and quadratic assignment problems,

this Review, 14 (1972), pp. 324-342.
[11] E, M. HOLROYD, Polar and rectangular road networks for circular cities, Transportation Sci., 3 (1969),

pp. 86-88.
[12] R. M. KARP, A. C. McKEixAR AND C. K. WONG, Near-optimal solutions to a 2-dimensional

placement problem, SIAM J. Comput., 4 (1975), pp. 271-286.
[13] C. E. M. PEARCE, Locating concentric ring roads in a city, Transportation Sci., 8 (1974), pp. 142-168.
[14] S. PLATTNER, Rural market networks, Sci., Amer., 232 (1975), no. 5, pp. 66-79.
[15] P. A. SCHWEITZER, Problem 5524: Moments of distances of uniformly distributed points, Amer. Math.

Monthly, 74 (1967), p. 1014 and 75 (1968), p. 802.
[16] R. J. SMEED, The Traffic Problem in Towns, Manchester Statistical Society, Manchester, U.K., 1961.
[17] R. J. SMEED AND G. O. JEFFCOATE, Traffic flow during the journey to work in the central area of a

town which has a rectangular grid for its road system, Proceedings of the Second International
Symposium on the Theory of Road Traffic Flow, London 1963, J. Almond, ed., Organisation for
Economic Co-operation and Development, Paris, 1965, pp. 369-390.

[18] T. TAN, Road networks in an expanding circular city. Operations Res., 14 (1966), pp. 607-613.
[19] G. N. WATSON, Mathematical note 2871: A quadruple integral, Math. Gaz., 43 (1959), pp. 280-283.
[20] W. A. WHITWORTH, DCC Exercises in Choice and Chance, Deighton Bell, Cambridge, England,

1897.
[21] C. WITZGALL, Optimal location of a central facility: Mathematical models and concepts, National

Bureau of Standards Rep. 8388, Washington, DC, 30 June 1965.
[22] C. K. WONG AND K.-C. CHU, Average distances in I" discs, this Review, 19 (1977), pp. 320-324.
[23] O. WYLER, Solution of problem 5524, Amer. Math. Monthly, 75 (1968), pp. 802-804.

Supplementary References
Traffic Flow

[1] D. J. ARMITAOE AND M. MCDONALD, "Traffic flow and control" BIMA (1979) pp. 274-278.
[2] W. D. ASHTON, "Models for road traffic flow," BIM\ (1972) pp. 318-322.
[3] , The Theory of Road Traffic Flow, Methuen, London, 1966.
[4] J. E. BAERWALD, ed., Transportation and Traffic Engineering Handbook, Prentice-Hall, N.J., 1976.
[5] E. A. BENDER AND L. P. NEUWIRTH, Traffic flow: Laplace transforms," AMM (1973) pp. 417-422.
[6] R. E. CHANDLER, R. HERMAN AND E. W. MONTROLL, Traffic dynamics: Studies in car following,"Oper. Res.

(1958) pp. 165-184.
[7] A. J. H. CLAYTON, "Road traffic calculations,"}. Inst. Civil Engrs. (1941) pp. 247-284, 558-594.
[8] D. R. DREW, Traffic Flow-Theory and Control, McGraw-Hill, N.Y., 1968.
[9] M. DUNNE AND R. B. POTTS, "Algorithm for traffic control'Oper. Res. (1964) pp. 870-881.

[10] L. C. EDIE, "Car-following and steady state theory for noncongested traffle," Oper. Res. (1961) pp. 66-76.



TRAFFIC FLOW 107

[11] , Traffic deals at toll booths,"}. Oper. Res. Soc. Amer. (1954) pp. 107-138.
[12] D. C. GAZIS, Traffic flow and control: Theory and applications," Amer. Sci. (1972) pp. 414-424.
[13] , Traffic Science, Interscience, N.Y., 1974.
[14] D. C. GAZIS, R. HERMAN AND R. B. POTTS, "Car following theory of steady state traffic flow," Oper. Res. (1959)

pp. 499-505.
[15] D. C. GAZIS, R. HERMAN ANDR. W. ROTHERY, "Non-linear follow-the-leader models of traffic flow," Oper. Res.

(1961) pp. 546-567.
[16] D. L. GERLOUGH AND M. J. HUBER, Traffic Flow Theory, A Monograph, Special Report 165, Traffic Research

Board, National Research Council, Washington, D.C., 1975.
[17] J. D. GRIFFITHS, "Mathematical models for delays at pedestrian crossings," BIMA (1979) pp. 278-282.
[18] F. A. HAIGHT, Mathematical Theories of Traffic Flow, Academic Press, N.Y., 1963.
[19] R. HERMAN, E. W. MONTROLL, R. B. POTTS AND R. W. ROTHERY, Traffic dynamics: Analysis of stability in car

following," Oper. Res. (1959) pp. 86-106.
[20] R. HERMAN, ed.. Theory of Traffic Flow, Elsevier, N.Y., 1961.
[21] S. H. HOLLINGDALE, ed., Mathematical Aspects of Marine Traffic, Academic, N.Y., 1979.
[22] A. J. HOWIE, "Mathematical models for mad traffic," BIMA (1972) pp. 118-123.
[23] J. F. C. KINGMAN, "On queues in heavy traffic,"]. Roy. Statist. Soc. Ser. B. (1962) pp. 383-392.
[24] E. KOMETANI AND T. SASAKI, "On the stability of traffic flow,"}. Oper. Res. Japan (1958) pp. 11-26.
[25] B. O. KOOPMAN, "Air-terminal queues under time-dependent conditions,"Oper. Res. (1972) pp. 1089-1114.
[26] M. J. LIGHTHILL AND G. B. WHiTHAM, "On kinematic waves II: A theory of traffic flow on long crowded roads,"

Proc. Royal Soc. (1955) pp. 317-345.
[27] A. J. MILLER, "Settings for fixed-cycle traffic signals," Oper. Res. (1963) pp. 373-386.
[28] G. F. NEWELL, "A theory of platoon formation in tunnel traffic," Oper. Res. (1959) pp. 589-598.
[29] , "Approximation methods for queues with application to the fixed-cycle traffic light," SIAM Rev. (1965)

pp. 223-240.
[30] , "Nonlinear effects in the dynamics of car following" Oper. Res. (1961) pp. 209-229.
[31] , "Synchronization of traffic lights for high flow "Quart. Appl. Math. (1964) pp. 315-324.
[32] , Theories of instability in dense highway traffic,"]. Oper. Res. Japan (1962) pp. 9-54.
[33] P. I. RICHARDS, "Shock waves on the highway," Oper. Res. (1956) pp. 42-51.
[34] H. ROBBINS, "A theorem on graphs with an application to a problem in traffic control," AMM (1939) pp. 281-283.
[35] T. UEM ATU, "On the traffic control at an intersection controlled by a repeated fixed cycle traffic light," Ann. Inst.

Statist. Math. (1958) pp. 87-107.
[36] J. G. WARDROP, "Some theoretical aspects of road traffic research, "Proc. Inst. Civil Engrs. II (1952) pp. 325-362.
[37] M. WOHL ANDB. V. MARTIN, Traffic System Analysis, McGraw-Hill, N.Y., 1967.



4. Electrical Networks

A Minimum Switching Network

Problem 59-5, by RAPHAEL MILLER (Hermes Electronic Corp.).

In a recent issue of an automation periodical2, the problem is posed of obtaining
a switching network which will actuate a device for a selected range of binary
inputs. In particular, it is asked that a valve be opened for binary inputs cor-
responding to the integers 8, 9,10, 11,12, 13, and 14, where possible inputs go up
to 7 binary digits. The proposed network is shown in the figure.

The binary significance of a vertical line is read bottom to top from the un-
encircled crossovers of the vertical line with horizontal lines. Note that such
crossovers are not electrical connections. If a setting of the switches includes a
circled crossover in a vertical line, then the line is shorted directly to ground
through the switch. (The short is not indicated on the diagram.) Otherwise, cur-

Figure 1.

1 T. R. Munson and R. J. Spindler, Transient Thermal Behavior of Decomposing Materials,
Part I: General Theory and Application to Convective Heating, RAD-TR 61-10, April 1961.
! Klein, Williams and Morgan, Digital process control. Instruments and Automation,

October, 1956, pp. 1979-1984.
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rent flows through the vertical line from the B+ terminal and a potential drop is
produced across the valve controller. A circled crossover represents a diode in-
serted as shown in Figure 1. Accordingly, current can flow from a vertical line to
a horizontal one, but not vice versa. This feature prevents the deliberate shorting
of one vertical line from inadvertently shorting another vertical line. For exam-
ple, the reader should verify that if the diodes were replaced by tie points, then
shorting of lines 5, 6, and 7 by switch iS5 would also short lines 1, 2, 3, and 4.

Show that the proposed network can be considerably simplified so as to involve
the minimum number of diodes.

Editorial note: In Raphael Miller's solution (July, 1960), the number of diodes
needed are 15. In A. H. McMorris' solution, 9 diodes are required. In the solution
below, only 8 diodes are required and this is the minimum number.

Solution by Layton E. Butts (Systems Laboratories).
McMorris' simplification of the logical function F is certainly correct, but it

seems somewhat simpler to me to start with the logical function F on p. 221
(July 1960), and use DeMorgan's theorem to find its negative F. Thus (in the
notation of Miller)

and hence

Furthermore, the logical diagram given by McMorris involves a redundancy;
it should be (in his notation)
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for which the circuit diagram is

with only 8 diodes.
This is believed to be the minimum number of diodes inasmuch as one diode

must be employed for each stage of the counter in order to inhibit the valve
response to the integer 15, while an additional diode is required to isolate the
And gate from the Or gate. The imposing of the condition E2 g #3 assumes that
| B— | = | B+ \ and that the output voltage does not exceed zero when F-ia low.

Comment on the above solution by A. H. McMorris (University of Houston):
Butts' belief that 8 is the minimum number of diodes required can be sub-

stantiated by applying the methods of Caldwell to obtain the minimum sum
expression (MSE). The MSE obtained here will be the unfactored form for F.
The MSE can then be factored to obtain the simplest factored form (SFF) where
the SFF is defined as that form which does not contain any repetition of literals.
The number of diodes required will be the total number of literals in the SFF
plus (L-l) where L is the number of logic levels required by the SFF. In this
case, the number of literals is 7 and the number of levels is 2. It should be noted
that it is not always possible to obtain the SFF. For example, the function

F = WX+WY+XY
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cannot be factored so that repeated literals do not occur. The three factored
forms are:

A Resistor Network Inequality

Problem 60-5, by ALFRED LEHMAN (University of Toronto).

Consider the m X n series-parallel resistor network of Figure 1. The driving-
point resistance between the terminals A and B is given by

In each case, two literals are duplicated.

The addition of short-circuits to the network of Figure 1 produces Figure 2.
The driving-point resistance between terminals C and D is given by

Since short-circuits in a resistor network cannot increase resistance,

or equivalently

Give a direct proof of the latter inequality where r.-y ^ 0.

Solution by FAZLOLLAH REZA (Syracuse University).
We shall first prove the inequality RAB ^ ROD for n = m = 2, and then ex-

tend it by induction to the general case. The proof is based on the concavity of
the function <t>(x, y) = (x~~l + y""1)"1, (x, y ^ 0). That 4> is concave follows
from

Whence,

and
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FIG. 2.

(note that <j)(kx, ky) = k<f>(x,y)). This establishes the inequality for n = m = 2.
To extend the proof, it is first shown that the inequality is true for any positive
integer n > 2. The non-negative numbers r^ can be written in the matrix form

To show that the inequality is valid for m = 2,n = 3, we note that the inequal-
ity is already valid for

On the other hand, it was established that

Thus the theorem holds for m = 2, n = 3 and by induction for all n 5: 2.
The theorem holds for the 2 X n array
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Due to the concavity of <j>, the first row of the latter array can be replaced by
the following suitable 2 X n array without violating the inequality. That is,
the theorem holds for

Continuing by induction, the inequality holds for arbitrary positive integers
m and n.

Solution by the proposer.
The inequality

is a special case (a — — 1) of the Minkowski inequality

This latter inequality and several proofs are to be found in (3) (see particularly
2.11.4 and 2.11.5 on page 31).

It is the purpose of this solution to discuss the relation between the Minkowski
inequality and the concept of a short-circuit in a network of non-linear resistors,
each of voltage-current characteristic

(Ek denotes the voltage, Ik the current and rk the resistance associated with
the fcth resistor. The constant a is to be the same for all resistors of the network.)

In the linear case (a = — 1) where each resistor obeys Ohm's law the result is
essentially given by Jeans (4) on pages 320 to 324. Assume a passive network of
linear resistors (i.e. obeying Ohm's law Ek = rklk) excited by a single unit-
current source. Consider the dissipated power CJ^krkIk) resulting from any
current distribution obeying Kirehoff's current, (continuity) law.* The unique
current distribution which also satisfies Kirehoff's voltage lawf is the unique
distribution which minimizes the dissipated power (Jeans Theorem 357, page
322). Hence consider two such networks, the second being derived from the first
by a sequence of short-circuits. The actual current distribution of the first net-
work also satisfies the conditions of Kirehoff's current law for second network.
Hence the actual power dissipation in the second network cannot exceed that of
the first. Since the networks are excited by a unit current source, the equivalent
resistance between the excited terminals is equal to the dissipated power. Hence
the terminal-to-terminal resistance of the second network cannot exceed that of
the first (essentially Jeans Theorem 359, page 324). The inequality of problem
60-5 then results from a computation of the resistance of the two given series-
parallel networks by means of the series and parallel combination rules a -f 6
and (a"1 + IT1)-1.

* The algebraic sum of currents entering any vertex is 0.
f The algebraic sum of resistor voltages around any closed circuit is 0.
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This result can be generalized to networks of resistors each having a voltage
current characteristic of the form Ek = (sign Ik) (rk Ik ~1/a) where rk > 0
and a < 0, a being the same for all resistors of the network. By Theorems 1 and
3 of Duffin (2) and the remark on page 438 of Birkhoff and Diaz (1) it follows
that the unique current distribution which satisfies Kirchoff's current law and
minimizes the dissipated power 2* rt\ I* 11~(1/a)1 is the unique current dis-
tribution satisfying both of Kirchoff's laws. Since the resulting terminal-to-
terminal behavior of the network is easily shown to have the form E = (sign
/) (r I |~(1/a)); E and / being the applied voltage and current, the network has an
equivalent resistance r and this resistance cannot be increased by short-circuits.
The Minkowski inequality for a < 0 then follows, as in the linear case, from the
computation of the resistance of the two networks of problem 60-5 by means of
the appropriate series and parallel combination rules a + b and (a" + 6a)1/a.

The previous argument holds where Ek is an increasing function of Ik , that is
where a < 0. For a > 0 it is possible to formulate a theory of series-parallel
resistor networks which yield the Minkowski inequality by power minimization
for 0 < a < 1 and by power maximization for a > 1. The electrical significance
of such networks is open to question. Consider, for example, the networks a
and 6 of figure 3. For either, the equivalent resistance between the * marked
terminals, calculated by the series and parallel formulas, is 8. This corresponds to
equality in the 2 X 2 case of the Minkowski inequality for a = |. The result
can also be obtained from the Kirchoff's law current distribution 7t = |,
k = 1, 2, 3, 4. If non-series-parallel networks are considered the Kirchoff's
law current distribution need not be unique. For example, in the network c of
figure 3, the distribution Ii = 74 = 76 = f,a h = h = I satisfies both of

FIGURE 3

1 With the proper orientation for Is.



ELECTRICAL NETWORKS 115

Kirchoff's laws and yields a resistance of 45/4 between the * marked terminals.
But by symmetry the same can be said for the current distribution /2 = h —
7B = i," /i = /4 = f. Furthermore the 7's may be chosen so as to satisfy
Kirchoff's current law and have arbitrarily large magnitudes. Hence the dis-
sipated power may be made arbitrarily small. In the case of series-parallel
networks however the restriction of current flows to a single direction insures
that a unique current distribution appropriately maximizes or minimizes the
dissipated power.

(1) G. BIRKHOFF and J. B. DIAZ, Non-linear network problems, Quart, of Appl. Math., vol.
13 (1955) pp. 431-443.

(2) R. J. DUFFIN, Non-linear networks II A, Bull. Amer. Math. Soc., vol. 53 (1947) pp.
963-971.

(3) G. H. HARDY, J. E. LITTLEWOOD, and G. P6LYA, Inequalities, Cambridge, 1934.
(4) J. JEANS, The mathematical theory of electricity and magnetism, Cambridge, fifth ed. 1925.

It is to be noted that the Reza solution yields a straight-forward easily re-
membered proof of the Minkowski inequality. Also by starting with the func-
tion

with general a, the inductive proof of Reza (or the similar inductive proof of
reference 3, pp. 38-39) then yields the Minkowski inequality for all values of
the exponent.

A Network Inequality

Problem 68-1, by J. C. TURNER AND V. CONWAY (Huddersfield College of Technology, England).

I f p + g = l , 0 < p < l , and m, n are positive integers > 1, give a direct
analytic proof of the inequality

The problem had arisen in the comparison of the reliabilities RA and RB of
the two systems in Fig. 1. Here,

where p denotes the probability of any component operating and it is assumed
that all the components operate independently. Reliability is denned as the
probability that the system operates successfully under the given conditions. A
system is said to operate successfully if at least one path is made from input to
output, when all the components are activated simultaneously.

Since the set of all possible paths through the network A is a subset of the set
for network B, it is clear that the above inequality must hold.

Editorial note. Particular nice special cases of the above inequality are
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the latter inequality being known.
The original inequality can also be shown to hold for nonintegral m, n > 1.
Other related inequalities can be obtained by introducing one line of short-

circuits at a time, e.g.,

Also, if the probability of each component operating can be different, we obtain

FIG. 1

For a similar derivation of another network inequality, see Problem 60-5,
this Review, 4 (1962), pp. 150-155. [M.S.K.]

Solution by F. GOBEL (Twente Institute of Technology, Enschede, Nether-
lands).

For m = 1, the assertion holds with the equality sign. Assuming the assertion
to be true for m = 1, we have

It remains to be shown that the last expression is greater than or equal to
1 - (1 - pm)", or, equivalently

This inequality is of the form a" + b" g c" + d" with a = 1 - pm l, b = q,
c = q(\ - pm~*),d = 1 - pm. It is easily seen that a + b = c + d and that
d = max (a, b, c, d). Since x" is convex for x 2: 0, n ^ 1, the proof can be com-
pleted by invoking the following lemma.

LEMMA. // / ( • ) is convex, d = max (a, b, c, d) and a + b = c + d, then
/(a) + f(b) ^ f(c) + f(d).

Proof. Let a + ^ = 1, a and /? 2z 0. From the convexity o f / ( • ) we have

and

Adding, we obtain
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Choose a and f$ such that ac + fid — a; this implies

and the proof is completed.

Solution by L. CARLITZ (Duke University).

We shall show that, for n > 1, m > 1,

where

To begin with, we show that

where

Indeed,

This proves (2).
If in (2) we replace a, b, c, d by 1 — a, 1 — b, 1 - c, 1 — d, respectively, we

obtain

where

This evidently proves (2) when n = m = 2.
We now show that, for n ̂  2,

Since we have already proved (3) when n = 2, we assume that it holds up to and
including the value n. To carry out the induction, we put

and Pij = 1 — qu. By the inductive hypothesis,
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that is,

To complete the induction, we need only show that

(5) is equivalent to

which has already been proved.
We have therefore proved (1) for m = 2 and all n: or equivalently for n = 2

and all m. We now assume that (1) holds for all m and for all i = 1, 2, • • • , n. We
again use the notation (4). By the inductive hypothesis,

that is,

To complete the induction, we need only show that

in view of (6), this is the same as

But this has already been proved.

Editorial note. JOEL BRENNER (University of Arizona) in his solution also
establishes that for

or in homogeneous form

with a,b,c> 0.

Correspondingly, the proposed inequality in homogeneous form is

Since
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Also he notes that the inequalities are reversed if 0 < m, n,t < I .
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5. Communication and Coding

A Set of Convolution Equations

Problem 60-9, by WALTER WEISSBLUM (AVCO Research and Advanced Development Division).

In simulating the operation of a certain radar detection system on a computer,
it was necessary to have a method of producing a stationary sequence of normal
random variables with mean zero, and with a prescribed autocorrelation se-
quence

That is, the sequence Xi of random variables produced must satisfy E(X{) <= 0
and

The following method was proposed: First produce a sequence Yt of independ-
ent normal random variables with mean zero and standard deviation 1 and then
define

with suitable constants a n , ai, • • • , an . This construction clearly provides
stationarity, normality, mean zero, and zero correlation for | i — j \ > n. The
only question is the existence of suitable real {at} to produce E(Xi-Xj) =
C|i-ji for i — j | ^ n. This reduces to determining the existence of a real solu-
tion to the following set of convolution equations:

Determine a necessary and sufficient condition on the {<7,-j such that real
{a,-} exist, and give a method for finding them.

I. Solution by A. W. McKiNNEY (Sandia Corporation).t

In order that there exist a sequence of real normally distributed random vari-
ables {Xj} with means equal to zero and with covariance function C j , where
Cn 5* 0 and Cj = 0 for j > n, it is necessary and sufficient that the sequence
{Cj} be positive definite [1]. The sequence {Cj} is positive definite if and only if
the function

tFor other solutions, see SIAM Rev. 5 (1963) pp. 276-283.
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is monotone nondecreasing for 0 g X ̂  )•£ [1], thus if and only if the function

is nonnegative for 0 ^ X ̂  3/£. Since cos 27i7i (% + X) = cos 2irh (}4 — \)
for integers h and all real X, it follows that the sequence {Cy} is positive definite
if and only if the trigonometric polynomial

is nonnegative for all real X. By a theorem of L. Fej6r and F. Riesz [2], a trig-
onometric polynomial T(X) is nonnegative for all real X if and only if it can be
written in the form

where the coefficients a 0 , • • • , an are real or complex numbers. An examination
of the proof given by Szego for this theorem [2] yields as an immediate conse-
quence the fact that the coefficients o 0 , • • • , an can be taken to be all real if and
only if in the trigonometric polynomial

the coefficients Dh are equal to zero for h = 1, • • • , n. Since this is the case for
F(\) in (2), it follows that the sequence {C,} is positive definite if and only if
there exist real numbers ao , • • • , an such that

Multiplying each member of (4) by cos 2-TrfcX and integrating over the range
X = 0 to X = Y2, it follows that

n-k

Therefore, there exist real numbers aa, • • • , an such that X) «too»+* = C/, if and
ft=0

only if the sequence {C,-} is positive definite. If a sequence [Cj] is to be tested for
positive definiteness, the most convenient approach on a digital computer prob-
ably is to compute the polynomial F(\} defined by (2) for many values of X
between 0 and ^'2, and see if F(\) remains positive. If a sequence {C,} is pre-
sumed to be positive definite, and if the coefficients ao , • • • , an are to be found,
the only feasible methods are iterative. It should be noted that there are, in
general, several real sets of coefficients a n , • • • , an which satisfy the required
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equations—in fact, if «o, • • •, an is one such sequence, then so is &o = an , b\ =
an_! , - • • , & „ = a<>—and therefore, the choice of a starting value may well affect
the rate of convergence of Newton's method. (Of course, Newton's method al-
ways converges if the starting values are close enough to the required solution.) f
One possible choice of starting values is to set a» = C/, for h = 0, 1, • • • , n. It
may prove desirable in an iterative solution to make use of the fact (easily de-
duced from (3) by putting X = 0 or %, respectively) that
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Comment by M. J. Levin (RCA Missile Electronics and Controls Division).
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An Inequality for Walks in a Graph

Problem 83-15, by J. C. LAGARIAS, J. E. MAZO, L. A. SHEPP (AT&T Bell Laboratories,
Murray Hill, NJ) ANDB. McKAY (Vanderbilt University).

Let G be a finite undirected graph with N vertices, which is permitted to have
multiple edges and multiple loops. A directed walk of length k is a sequence of edges
e\, • • • , ek of G together with vertices #,, • • • , vk+} such that edge et connects vertex v/
and vi+t. Let wk = wk(G) denote the number of distinct directed walks of length k in G.
For which pairs (r, s) is the inequality

true for all graphs G ?

Solution by the proposers.
We show that the inequality holds when r + s is even, and exhibit counterexamples

whenever r + s is odd.
Let A denote the adjacency matrix of the graph G (for a fixed ordering of its

vertices), i.e., atj = 1 if there is an edge between i and j in G and atj = 0 otherwise. Then A
is a nonnegative symmetric matrix with integer entries. It turns out that only the
symmetry of A is important in proving the result for r + s even.

THEOREM 1. For any graph G with N vertices, the inequality

holds for all positive integers r, sfor which r + s is even. If the adjacency matrix A ofG
is positive definite, this inequality holds for all positive integers r and s.

Proof. It is well known that the (i, j')th entry of Ak counts the number of directed
walks of length k in A which start at vertex / and finish at vertex/ Consequently

where 1 is the TV x 1 column vector with all entries 1. The theorem is an immediate
consequence of the following result, after noting that 1' 1 = TV. D

THEOREM 2. Let Abe a real TV x TV symmetric matrix and $ a real TV x 1 column
vector. Ifzk = i^'Ak^ then

ifr + s is even. It holds for all r, s if A is positive definite.

Proof. Since A is symmetric, A is diagonalizable by an orthogonal matrix, and all its
eigenvalues are real. Let fa, • • • , <t>N be an orthonormal set of (real) eigenvectors with
corresponding eigenvalues X,, • • • , X/y, i.e., 0J<^ = 1 if / = j, 0 otherwise. Then we have

where

Then
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Hence

Now define a discrete random variable X on the set {XH • • - , X n } b y

Note that

using (1). Consequently,

We also note that if A is positive semidefinite, then all the eigenvalues A, are nonnegative
so that A" is a nonnegative random variable. The proof is completed using the following
well-known fact.

FACT. The inequality

holds for all random variables X when r + s is even, and for nonnegative random
variables for all positive r and s.

Proof. Let X, Fbe independent random variables both having the same distribution.
For any realizations X0, YQ we have

if r + s is even. If Y0, XQ are nonnegative, then (3) holds for all positive integers r and s.
Now take expected values of both sides of (3) and note that

using independence. The fact follows.
THEOREM 3. For any pair r, s with r + s odd there is a graph G with N vertices with

Proof. We may suppose r = 2k - 1, s = 21 with k, I ^ 1. Let Km denote the complete
graph with m vertices and Sp the />-star, the unique tree with p vertices that has a vertex of
degree/) - 1.

We consider the graph (7m+l im2+,+ 1 which is the disjoint union of Km+l and Sm^+t+].
We use the fact that if G is the disjoint union of the graphs G, and G2 then

It is easy to verify that
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and that

Now consider (jm+iv+»+i where t ^ 1 is viewed as fixed and we let m —*• <». A straightfor-
ward algebraic calculation using (4)-(6) gives

This shows that for sufficiently large m (depending on t) Gm+lmi+t+l has

the desired counterexample.
These counterexamples are disconnected graphs. One may obtain connected counter-

examples by considering the graph G*+1>m2+,+1 obtained by adding an edge connecting
Km+l to a vertex of degree of one in Sm*+t+i. More explicitly, for r = 1, s = 2, we may take
the disjoint union of K3 and S6. This has 9 vertices, and w, = 16, u>2 = 42, vv3 = 74, so that

We can also take m = 8, t = 1 to obtain a connected counterexample, i.e. take K9 and
5"89 with an edge connecting a vertex of K9 to a vertex of degree 1 of SS9. D

Although there are counterexamples to the inequality when r + s is odd, it is possible
to show that it is "almost true" in the following sense.

THEOREM 4. For any graph G there is a constant nQ = nQ(G) such that for all
r,s^nQ

We omit the proof.
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7. Applied Geometry

THREE-DIMENSIONAL PIPE JOINING*

ERYK KOSKOt

Abstract. A solution is given to the problem of joining two skew half-lines by a curve composed of two
circular arcs of equal radii in such a way that the aggregate curve has a continuous tangent, providing a smooth
passage between its component parts. The solution is based on considerations of spherical geometry.

Introduction. The layout of pipelines often requires the joining of two straight
runs which end each at a point. If sharp kinks in the line are to be avoided in order to
ensure a smooth flow of the fluid, a curved section must be inserted. In the simplest case
this may be a circular arc, but that is not always possible. In general, a curve composed
of two mutually touching circular arcs of equal radius is always possible. The advantages
of using circular arcs are obvious: for a given configuration they minimize the curvature
of the line (i.e., provide the largest radius) and are easy to lay out and to manufacture.

When the two straight lines lie in the same plane, the problem is relatively simple.
This case has been discussed by the author in [1] where both an algebraic solution and
some geometric constructions were indicated. The more complicated three-dimen-
sional case, which arises when the lines are skew to each other, does not seem to have
received much attention in the literature. The only exception known to the author is a
paper by Fox [2] whose solution involved the consideration of a spatial curve obtained
by intersecting two quadric surfaces. We show that a practical solution may be achieved
more directly by treating the problem as one of spherical geometry.

Statement of the problem. As noted by Fox, two given skew lines a' and a", with
points A' and A", respectively, given on them, determine a unique sphere which touches
these lines at the given points. The two circular arcs, which smoothly join A' and A" by
touching the lines at these points and touching each other, are parts of two circles F and
F" which lie in the surface of the sphere. The center O of the sphere lies on a line z which
is the intersection of a plane II' laid through A' perpendicularly to a' with a plane II" laid
through A" perpendicularly to a". To determine the radius R of the sphere and the
position of the center O on the z axis, we proceed as follows (Fig. 1): consider the z axis
as being the north-south axis of the sphere and the plane drawn normally to that axis
through O as the equatorial plane. The lines a' and a" lie in planes parallel to the
equatorial plane, at distances z = h' and z = h", respectively, from it; these planes
intersect the sphere in parallel circles of radii r' and r", respectively. These radii, being
equal to the distances of A and A" from the z axis, may be regarded as known
quantities. Also known is the distance h between the parallel planes, equal to the
smallest distance between a' and a". The known lengths, r', r" and h and the unknowns
R, h' and h" are related by the equations

from which the unknowns are readily obtained:

* Received by the editors July 11, 1978, and in revised form December 7, 1978.
t 2106 Woodcrest Road, Ottawa, Ontario, Canada K1H 6H8.
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A convenient cartesian system of coordinates Oxyz may now be introduced by
using the two planes which bisect the dihedral angle 2a formed by the planes II' and II",
as shown in the figure. The corresponding spherical coordinates are:

For points A' and A", we thus have

The problem now is to determine two small circles F and P of equal radii on the
spherical surface satisfying the following conditions:

(i) circle F" must touch the parallel circle <£' at A';
(ii) circle F" must touch the parallel circle </>" at A";

(iii) circles F and F" must touch each other in such way that the passage from A' to
A" along arcs of these circles could be accomplished without reversal of sense.
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Outline of solution. Let the (spherical) radius of the circles F and F" be denoted by
p (see Fig. 2). Then, in order to satisfy condition (i), the center C' of circle F must lie on
the meridian passing through A' at a distance p from A', i.e., at a latitude i/*' = <£' -p.
Similarly, condition (ii) will be satisfied if the center C" of circle F" lies on the meridian
passing through A" at a distance p from A", but here the distance must be taken in the
opposite sense to the first one in order to avoid the reversal of sense as postulated in (iii).
Therefore the latitude of C" is iff" = 4>" + p. The spherical coordinates of the centers are
thus C'( - a, tit'), C"( + a, ip"). For the circles to be touching the spherical distance C'C"

FIG. 2

(i.e., the central angle C'OC") must be equal to 2p. Applying the cosine rule to the
spherical triangle C'NC" (having sides C"N = 90°-»A', C"N = 9Q°-il>" and angle at
N equal to 0"- 0' = 2a), the side C'C" is given by

Substituting for iji' and t//" and rearranging the terms, this may be written
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where

Note that both A and C are always positive quantities. Dividing all terms in (5) by cos2p,
we obtain

a quadratic equation for tan p. Its two roots are

The square root term is always real and greater in absolute value than the first term. The
two roots are therefore always real and have opposite signs; the sign of the root smaller
in absolute value is the same as that of the coefficient B, i.e., of sin (<£'-<£").

Having chosen one of the two values for the root p, we next determine the
point T where the circles F' and F" touch; this is the midpoint of the arc C'C" of the
great circle which joins the centers. Its cartesian coordinates are found by obtaining
those of the midpoint T* of the straight line segment C'C" and dividing the values by
cosp:

The line t, common tangent to the circles F' and F" at T (also touching the sphere at
this point), is perpendicular to the plane OC'C". The components of its direction vector
are obtained by forming the vector product OC' x OC" and dividing the values by the
magnitude of that product, which is R2 sin 2p. After some manipulation, the required
direction cosines are found to be

The coordinates of points S' and 5" at which the tangent t meets the lines a' and a",
respectively, may be found in several ways. The simplest is to write the equation of the
plane which touches the sphere at T and which contains the line t:

This plane intersects the "parallel" plane, z = h', laid through A' (and containing the
line a') along a line whose equation in that plane is

On the other hand, the equation of line a' in the same plane is
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Substituting the values of h', r', XT, VT, ZT, in terms of the angles a, <£', <£", p, if/', tj/" and
solving the foregoing two simultaneous equations for the coordinates of the point of
intersection, yields

Similar expressions are obtained for the coordinates of point S" in the plane z = h":

The length s' of the tangents drawn from S' to either A' or T on the circle F" is best
obtained by setting s' = (h' -ZT)/V and substituting for h', ZT, v their known values,
which yields

Similarly, setting s" = S"T = S"A" = (ZT - h")/i> and substituting for h", ZT and v yields

To complete the solution it is necessary to calculate the length of the curve which
smoothly joins the points A' and A" and is composed of the arcs A'T and TA". The
length of the first of these arcs is /' = 25V where r is the radius of the circle, r = R sin p,
and 8' is half the angle subtended by the arc. Figure 3 is drawn in the plane of circle F
and shows that

The second arc length, /" = 2S"r, is obtained in the same fashion, with

FIG. 3
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The somewhat tedious calculation of the tangent lengths 5' and 5" may be bypassed
by observing that 28' is the supplement to the angle formed by the tangents drawn from
5', i.e., by the lines a' and t. Therefore its cosine is equal to the scalar product of the
direction vectors of these lines and thus

which on substitution reduces to

The corresponding expressions for the angle 28" are

or, alternatively,

The preceding formulas are all valid for either of the roots (8). Owing to the
difference in sign between the two roots p the^ points of tangency tend to lie in
opposite hemispheres. In this connection it was found practical for numerical work to
extend the range of latitudes to the interval (-180°, +180°) and restrict that of the
longitudes to (- 90°, + 90°). For the sake of clarity only one of the solutions is illustrated
in Fig. 2.

Symmetric case. When the points A' and A" are at equal distance from the z axis,
i.e., when r' - r", it is easy to see that we must also have h' = ~h" = h/2. The entire
configuration then is symmetric with respect to the x axis. All the formulas and their
derivations are considerably simplified in this case, which is illustrated in Fig. 4.

The radius of the sphere is now given by

and the latitudes of points A' and A" by

FIG. 4
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Equation (5) for the spherical distance between centers C' and C" takes the form

Upon substituting t//' = <t>'~P, this equation transforms into the quadratic (7) with the
coefficients

The two roots are

By virtue of symmetry, the point T where the circles F' and F" touch falls on the x
axis and its coordinates are

The plane tangent to the sphere at that point has the equation x = ± R, the upper and
lower signs corresponding to those of the root (19).

A direct application of the addition theorem for the tangent function, yields

On the other hand, by applying the cosine rule to the right-angled spherical triangle
having vertices at C', T and at the intersection of the meridian A'C' with the equator, a
further useful relation is obtained

The common tangent t to the touching circles at point T has the direction cosines

The line t intersects the plane z = h/2 at a point S' for which

and the tangents S'T = S'A' drawn from that point to the circle F' have length

The length of the arc AT is again l' = 28'r where r = R sin p and the angle 8' which
subtends one half of that arc is given by either of the formulas

Needless to say, symmetry requires that s" = s' and S" = S'.
A graphical evaluation of all the quantities of concern is possible as soon as the

position of the point of tangency T has been ascertained. An elementary construction is
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performed in the plane of each of the circles F and F"; it consists in finding the circle
which passes through T and touches the line a' (or a") at point A' (or A"). In the
symmetric case, only one of these constructions is necessary and the point T is known as
soon as the tangent sphere has been determined.

REFERENCES

[1] E. KOSKO, A pipelaying problem. Math. Gaz., 47 (1964), pp. 192-196.
[2] M. D. Fox, A three-dimensional pipe-joining problem, Ibid., 53 (1969), pp. 142-147.

ESTIMATING THE LENGTH OF MATERIAL WRAPPED AROUND A
CYLINDRICAL CORE*

FRANK H. MATHISf AND DANNY W. TURNERt

Abstract. We present three methods for estimating the length of material (e.g., carpet, paper) that is
wrapped around a cylindrical core. Relationships among the methods are explored.

Introduction. The problem we wish to address originated from a request by our
campus Central Receiving Office for "an equation" to compute the number of linear units
of carpet remaining on many unlabelled rolls that were in storage. Neither unwinding the
rolls nor weighing them was practical. So a relatively simple procedure, using measure-
ments taken from the end of a roll, was desired.

Below we shall develop three methods to approximate the desired length. Each
method will calculate the exact length based on specific assumptions about the geometry
of the roll. Although the mathematics involved is elementary, we feel that the results are
interesting and even somewhat surprising.

For all three methods, we assume that the material is wrapped around a cylindrical
core having radius r,. Consider one circular end of the core and let point P be at the center
of this circle. Let point Q, on the circumference of the circle, correspond to the internal
starting position of the wrap and let point R, on the inner edge of the material, correspond
to the terminal position of the wrap. For computational simplicity we assume that P, Q
and R are collinear. Indeed if they are not, our calculations will be off no more than one
circumference of the inner core (i.e., 27rr,), an error which we consider to be acceptable.
Fig. 1 illustrates the situation.

We define the outer radius r2 to be the distance from P to R. We denote by n the
number of wraps the material makes from Q to R and by t the thickness of the material
which we assume to be constant throughout the wrap.

Method A. In the simplest approach, which requires only elementary geometry, we
assume that the material is wrapped in concentric circles for which the difference between
consecutive radii is t. We may then either sum up the average circumferences of each
layer or equivalently calculate the average circumference overall and multiply by n. We
thus obtain the first length formula:

'Received by the editors August 20, 1982, and in revised form March 3, 1983.
fDepartment of Mathematics, Baylor University, Waco, Texas 76798.
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FIG. 1. End view of material wrapped around a cylindrical core. r2 is the distance from P to R.

This method is simple enough; however, it may be challenged since it does not
account for the "bump" which occurs when each layer is wrapped above the starting point
Q. The next two methods attempt to take care of this.

Method B. If we assume that the material is flexible enough to allow a taut
wrapping, then the geometry of the problem will appear as in Fig. 2. Here we are looking
at the end of the roll again. The circle with center P and radius r, represents an end of the
core. Point S is located so that the line through points T and S is tangent to the
aforementioned circle at S. Angle QPS is denoted by a and is the same as angle R TV. The
length of line segment TS is called /. Now it is an easy exercise in trigonometry and
geometry to write down the total length of material, L2, that is represented in Fig. 2. First,
the length corresponding to the circular part of the /th wrap is approximated by

Note that an average radius is used and that a = arccos (/•[/(/•, + t ) ) . The length
associated with each of the n rectangles is / = ^t(t + 2r,). The length associated with the

FlG. 2. Detailed end view for the geometry of Method B (n - 3).
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/th sector is (2/ - \}(t/2)a. Here we use the average radius again. Adding all of our terms
and simplifying yields

into the above, we obtain (1).

where a and / have been previously given in terms of r, and t.

Method C. Suppose that the material is not as flexible as the geometry of method B
requires, but we may assume that the material forms a spiral from points Q to R. We may
define this spiral in polar coordinates by

Then the length of the spiral is given by the integral

Usine elementarv calculus techniaues we obtain a closed form for L*. Let s(x] =
Then

Comparison of the methods. At this point we might favor method A because of its
simplicity. However, we should ask if the geometries of methods B and C will produce
lengths substantially different from that calculated by method A. To answer this we will
investigate the differences in the approximations obtained from the three methods. The
major tool for this comparison is the following.

THEOREM 1. Let L\, L2, L3 be the approximations given by methods A, B, and C,
respectively. Then

and

Proof. This is simply an application of Taylor's theorem. We will present the steps to
obtain (1). Equation (2) follows in a similar manner.

Since

But by substituting
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The above theorem implies that all three methods yield essentially the same
approximation provided n is large relative to (r2 - r{)/r\. We may now seek conditions
which will assure that the approximations differ by less than some reasonable error, say
one percent. For simplicity we will obtain bounds using only the leading terms of the
right-hand sides of (1) and (2). Although the results will be meaningful only in an
asymptotic sense, i.e., as n tends to infinity, they are sufficient to give a representative
comparison. In particular, the next theorem investigates the difference in L2 and £,.

THEOREM 2. Let E{ = (2</2/3^)(r2 - /•,)3/2/T1/2 and suppose that there is a
positive number z such that t £ z2r, and n a 31 z. Then £,/L, is less than 0.01.

Proof. Note that t ^ z2r, implies that (r2 — /•,)//-, n £ z2. Then since r2 + r} > r2 - r{

we have

As an example of the z in the above theorem, consider z2 = 0.1. Then we may expect
L, and L2 to differ by less than one percent provided the thickness of the material is less
than one tenth of r, and there are ten or more wraps.

The next theorem presents a similar result for L} and L3.
THEOREM 3. Let E2 = ((r2 - r,)/4?r) In (r2/r,) AT1 and suppose that t S r, andn^ 3.

Then E2/L] is less than 0.01.
Proof. Since r2 > r, > 0, In (r2/r,) < (r2 - r,)/r,. Also since r2 + r} > r2 - r, and

(r2 — r,)//!/•, £ 1, we have

Conclusion. We have presented three methods for calculating approximations for
the length of a material wrapped in a cylindrical roll, each based on different assumptions
concerning the geometry of the roll. However, in most practical situations we have shown
that all three approximations agree to within an accuracy of roughly one percent.

NAVIGATION ON RIEMANNIAN OCEANS*

YVES NIEVERGELTf

Abstract. This note uses elementary linear algebra and vector products to solve plane or spherical
navigation, surveying, and radio goniometry problems. Down-to-water illustrations on San Francisco Bay and
the Bermuda Triangle are presented, followed by problems that link navigation to cartography.

Introduction. Spherical goniometry will constitute our main theme, but we shall first
treat the goniometric problem in the plane, because its simplicity makes it more accessible
to novices in calculus or linear algebra, and prepares students conceptually for direction
finding on the sphere, where they will discover an easy solution with cross products. These
practical applications will spark enthusiasm in the classroom while illustrating vector

*Received by the editors May 27, 1983, and in revised form November 14,1983. This work was partially
supported by a grant from the Swiss National Research Fund.

tDepartment of Mathematics, University of Washington, Seattle, Washington 98195.
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manipulations. Finally, the problems in the last section will introduce navigation maps,
tying together the plane and spherical situations.

1. Plane goniometry. In the "fox hunt" competition, the "hunters" must locate a
hidden radio station S (the "fox") by measuring the angle of incidence—called the
azimuth or bearing—between true North and the incoming radio signal from S.
Repeating this procedure at two places A and B, they find the "fox" at the intersection of
the rays supporting AS and BS, as Fig. 1 shows. A computational method offers greater
accuracy and practicality than trying to draw straight lines on a wet map out in the
electromagnetic field. Also, it enables one to consider points outside the map, or even to
work without a map.

Recalling that freshmen lose their Latin in front of Fpee/c symbols, we denote the
azimuths at A and B by a and b respectively. Then we define the normal unit vectors
U := (-cos a, sin a) and V ;= (-cos 6, sin b) to find equations for the intersection
S := (x, y ) of both lines AS and BS:

line AS: U • S = U • A,

line BS : V - S = V • B,

where the dots represent inner products (taking care of the otherwise infinite slopes due
North and South). Setting A-= (A{, A2) and B = (B^ B2), we get the following linear
system, which students can solve by their favorite method.

Example 1.1. Suppose that in the Presidio at coordinates (47.05, 82.95), we receive
the fox under the azimuth a = 23°, whereas on Telegraph Hill, at (52.34, 83.87), we
measure b = 342°. Substituting these data into system (2), we locate the fox at Mt.
Caroline Livermore, (50.22, 90.41), on Angel Island.

In this plane model, the rays AS and BS cross all vertical grid lines under the same
azimuths a and b. Therefore, S sees A in the direction u = a + 180° and B in the direction
v = b + 180°. Replacing a by u and b by v in (2) multiplies both sides by — 1, preserving
the same solution S. Let us exploit this property to solve the reverse problem: self-
location.

Example 1.2. Sailing on the Bay, you see Alcatraz Lighthouse (50.90, 86.50) in the
South-West (u = 225°) and Blunt Point Lighthouse (51.22, 89.46) in the North-West
(v = 315°). Solving system (2) with u and v instead of a and b respectively, you determine
your own Sail's position at (52.54, 88.14).

This algebraic rather than geometric point-of-view lends itself quite well to least-
squares estimates in surveying when fitting together several bearings:

Example 1.3. We see the tip (x, y) of an island under the azimuths a = 0°, b = 84°,
c = 125° respectively from (A) Ghirardelli Square (50.90, 84.43), (B) The Golden Gate
Bridge (46.00, 86.00), and (C) Sausalito Point (46.00, 90.00). These measurements
give three (generically inconsistent) linear equations -x + 50.90 = 0, -0.1045% +
0.9945>> - 80.72 = 0, 0.5736* + 0.8192;; - 100.1 = 0, derived exactly as (1). Either
with a pseudo-inverse or with calculus, we minimize the sum of the squares of the left-
hand sides at (3c, y) = (50.91, 86.53).

2. Spherical goniometry. Our plane model yields adequate results at short range,
say within 50 miles or so. (In practice, interferences along the wave path create distortions
several orders of magnitude worse than our plane approximation.) For longer distances,
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FIG. 1. The azimuths a and b measure the direction of S clockwise from true North at A and B
respectively. (Drawing and 1000-meter grid ticks based on the map SAN FRANCISCO NORTH, published
by the U.S. Geological Survey.) G.S. - Ghirardelli Square, T.H. - Telegraph Hill.

however, we need a spherical model, which we now develop.
A ship S at unknown longitude and latitude1 («, 0) is sending a distress signal

received by two coastal stations A at ($, X) and B at ( ,̂ 7) under azimuths a and ft
respectively (see Fig. 2). How do we locate the vessel? We simply determine the
intersection of two planes P and Q normal to the surface of the earth and passing through
A and B (along great circles) under azimuths a and ft. (Radio waves travel from the ship
to each station by successive deflections off the ocean and the ionosphere, which is
assumed parallel to the surface of the sea. Thus, the direction of propagation remains in a
fixed vertical plane, P and Q respectively.)

'The convention in geographical coordinates is to write the latitude first.
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FIG. 2. Oblique orthographic projection (axonometry) of the earth, showing the ship and both
direction-finders at A and B.

To locate the ship, define a unit vector E tangent to the surface at A in the direction
a, and a corresponding vector F at B. Thus, E and F point toward the vessel. Let
A := A/\\A || and B == /?/||fi||; since A and E span P, then A x E is normal to P, and
likewise B x F is normal to Q. Set

The vector S is normal to both A x E and B x F, hence it belongs to P n Q, so we need
only convert S into spherical coordinates S = (to, 6), because its length does not matter.
However, its sign does: we must choose between (co, 6) and (co + 180°, — 0), whichever lies
closer to A and B. (Select the one for which S • E, S • F > 0. The other one shows the
ship's antipode!) Students will appreciate the absence of spherical trigonometry in the
concise formula (3).

We can simplify computations by preparing all cross products, and a mere linear
combination of four fixed vectors will express S: endow A and B with orthonormal bases
(A, H, K) and (B, M, N) as in Fig. 2; then
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Taking advantage of the distributivity of cross products over additions, we get

Looking at Fig. 2 we see that A x K = -H, AxH = K, B x N = -M, B x M = N,
whence

For the reader's convenience, we make all vectors explicit in Cartesian coordinates:

Example 2.1. Coastal stations in Halifax (63°36'W, 44°38'N) and Charleston
(79°56'W, 32°47'N) receive a ship's signal from the respective bearings a = 195° and
b = 110°. With formula (4), we determine the ship's position by 68°24'W of longitude and
28°35'N of latitude: somewhere in the Bermuda Triangle.

3. Relevant problems. Can one reduce the previous spherical computations to plane
geometric constructions as in §1? Yes! The following problems will lead students to
entertaining discoveries at various levels of difficulty.

Problem 3.1. Prove that no homeomorphic projection S2 —>• R2 from part of the earth
S2 onto part of the navigation map R2 can transform all great circles into straight lines
while preserving all angles. (Hint: map a spherical triangle onto a plane one and compare
the sums of their angles.) Observe that Mercator projections do preserve all angles,
though. (See J. A. Steers, Introduction to the Study of Map Projections, 14th ed.,
University of London Press, London, 1965.)

Problem 3.2. Show that a gnomonic projection—from the center of the earth onto
any tangent plane—transforms all great circles into straight lines and conserves all angles
at the point of tangency. (Hint: great circles are sections through the center of the planet
by planes that meet the map along straight lines.)

Problem 3.3. Demonstrate that any projection p:S2—>• IR2 that maps all great
circles onto straight lines must be a gnomonic projection G followed by a linear
transformation L and a translation T. (Hint: Set T = Id + p°G~\O). Then T~lop°G~l

sends every straight line onto a straight line and fixes the origin. Hence, it must be linear
over the rationals Q. Now invoke continuity.)

Problem 3.4. Consider two nonantipodal points A and B on the earth S2. Find a
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linear transformation L and a gnomonic projection G such that p ••- L°G preserves all
angles at A and at B. This Maurer Orthodromic Projection makes goniometry on the
sphere look as simple as in the plane.

Problem 3.5. Examine the navigator's problem (Example 1.2) on the sphere: Two
beacons A and B send signals received under azimuths n and v at the ship. Knowing the
coordinates of A and B, how can the navigator determine the ship's position? (Caution:
the line of bearing—locus of all points on S2 that see A under the same azimuth /i—is
neither a geodesic nor a loxodrome.)

Problem 3.6. Are there maps S2 —>• IR2 that project all lines of bearing from A onto
straight lines?—and preserve all angles at A1—at A and at B? (See R. Keen, Wireless
Direction Finding, 3rd ed., Ilife & Sons, London, 1941, p. 264.)

Remark 3.7. Merchant vessels with more sophisticated equipment navigate with the
LORAN network, based on distances to four synchronized beacons instead of bearings.
(See J. A. Pierce, A. A. McKenzie, and R. H. Woodward, LORAN, McGraw-Hill, New
York, 1948.)

Problem 3.8. Study the navigator's problem (3.5) on a toroidal ocean parametrized
by the usual covering map C —> 51' x S1. (This flat geometry differs from that on the
familiar torus in IR3. Sailing on a doughnut may prove a sticky venture!)

Acknowledgment. The author is very grateful to the U.S. Geological Survey for
allowing the use of their maps.

Designing a Three-Edged Reamer

Problem 80-17, by B. C. RENNIE (James Cook University, N.Q., Australia).

A simple closed plane curve and a triangle ABC (regarded as a rigid body movable
in the plane) have the property that the triangle can be moved continuously so that each
vertex moves monotonically once round the curve. Must the curve be a circle?

The problem arises in the design of a "reamer," which is a tool used by a fitter to
finish-cut a hole to an accurate diameter; it may be fixed or adjustable. An adjustable
reamer usually has six straight cutting edges equally spaced parallel to the axis of the
tool. In reaming a hole it is not enough to enlarge the diameter when it is too small; we
also require to ensure that the hole is circular. A two-edged reamer would be of no use
since there are noncircular plane curves of constant diameter. Designing a three-edged
reamer leads one to the above question in plane geometry.

Solution by M. GOLDBERG (Washington, DC).
The curve does not have to be a circle. It can be a square with rounded corners, as

shown in the following example.
The Reuleaux triangle, made by three circular arcs, can be rotated within a square

while keeping contact with all the sides of the square. Each of the corners of the
Reuleaux triangle traces the square with rounded corners. This is the basis for a
commercial drill made by Watts Brothers Tool Works of Wilmerding, PA. It is pictured
and described by Martin Gardner in his column in Scientific American, February 1963,
p. 150, and it is mentioned in my paper Rotors in polygons andpolyhedra, Math. Comp.,
14(1960), pp. 229-239.

There are many other possibilities. My papers describe various methods of
obtaining noncircular ovals which can rotate within regular polygons,. If a rotor is held
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fixed while the polygon is rotated about it, then all the vertices of the polygon trace
another noncircular curve (see Figures). Therefore, if this new curve is fixed, then the

(a) Triangle rotor in an oval. (b) Square rotor in an oval.

regular polygon can be rotated within it while all the vertices trace the curve. Any three
of the vertices can be the vertices of a triangle rotating within the noncircular oval.
Another application of a triangular rotor in an oval is the rotary engine designed by
Felix Wankel (presently being used in the sports car, Mazda RX7).

The Shape of Milner's Lamp

Problem 65-9, by ROLAND SILVER (The MITRE Corporation).

Determine the shape of the lamp in the following quotation [1]: "The same
gentleman vouches for Milner's lamp: but this had visible science in it. ... A
hollow semi-cylinder, but not with a circular curve, revolved on pivots. The
curve was calculated on the law that, whatever quantity of oil might be in the
lamp, the position of equilibrium just brought the oil up to the edge of the cyl-
inder, at which a bit of wick was placed. As the wick exhausted the oil, the cyl-
inder slowly revolved about the pivots so as to keep the oil always touching the
wick." See Fig. 1.

REFERENCE

[1] AUGUSTUS DE MORGAN, A Budget, of Paradoxes, vol. 1, Dover, New York, 1954, p. 252.

Solution by J. D. LAWSON (University of Waterloo).
We assume for definiteness that the empty lamp has mass in and that the

center of gravity is at the lip. We assume further that the distance from pivot to
lip is unity, that the lamp is of unit thickness and that the fluid is of unit density.

We consider static equilibrium of the lamp as shown in Fig. 2. The angle 6 is
measured counterclockwise from the x axis. The equation of the liquid surface is
r = cos a/cos 8 and the angle (3 is found from p(j8 + a) = cos a/cos /3, where
•;• = p(6 + a) is the equation of the lamp. For equilibrium, we have

Simplifying
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This equation defines /3 as a function of a. Differentiating (2) twice with respect
to a, noting that p(j8 + a) = cos a/cos j3, and adding the result to (2) gives the
rlifforotrl-.ial pnnat.mn

FIG. 2

The solution of (3) is

The shape of theThus
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lamp for 9 g cos"1 c is constrained only by p(6) 5; [cos 8]~l. Choosing p(0)
= [cosfl]"1, a straight line, for 6 g cos™1 c ensures that the lamp will empty en-
tirely, and is thus a reasonable choice.

Substituting p(0) = [cos 0]"', 0 ^ cos"1 c, and p(6) = c"1, 8 g cos"1 c, in (2)
gives

The shape is thus a straight line segment plus a circular arc, the length of the
line segment depending upon the mass of the empty lamp.

Another Satellite Communications Problem

Problem 61-7, by ISIDORE SILBERMAN (Raytheon Mfg. Co.).

Determine the minimum number N(r, R) of circles of radius r necessary to
cover the entire surface of a sphere of radius R. Editoral Note: A lower bound
can be gotten immediately from area considerations. If Ar denotes the area of a
spherical cap (of radius R) whose base is a circle of radius r, then N(r, R) >
4irR2/Ar (since there must be overlap). Since an exact determination of N(r, R)
appears to be extremely difficult, reasonably close upper and lower bounds will
be acceptable as a solution.

Also, closely allied to this problem, is the packing problem of determining the
maximum number of circles of radius r which can be placed on the entire surface
of a sphere of radius R without overlap.

Solution by Louis D. GREY (The Teleregister Corp.).

We shall determine an upper bound for the minimum number N(r, R) of
circles of radius r necessary to cover the entire surface of a sphere of radius R.

It is convenient when working with spherical caps to work with the angular
radius A rather than the linear radius r. The relation between these two is given
by

By suitably choosing r the problem can be restricted to the unit sphere without
any loss of generality.

To determine an upper bound for the minimum number N*(A, 1) of spherical
caps of angular radius A necessary to cover the entire surface of a unit sphere,
we consider a closely allied problem. This latter problem is the determination
of the maximum number K(A) of spherical caps of angular radius A which can
be placed on a unit sphere without overlapping. The inverse of this latter problem,
namely, what is the largest angular radius A(K) such that K spherical caps of
angular radius A can be placed on the unit sphere without overlapping, has been
treated by L. Fejes Toth [1] who obtained the result.
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This is an asymptotic upper bound which is exact for K = 3, 4, 6, and 12.
7T

For K > 2 which implies 0 < A < -, we can solve for K to obtain
o

We shall show that

The argument is simple. Imagine that we have placed K(A) nonoverlapping
spherical caps of angular radius on the surface of a sphere. If we replace these
caps by concentric caps of angular radius 2A, then we claim the surface of the
sphere is completely covered. If it is not, there is a point whose distances from
the centers of the caps is greater than 2A. This implies that we could center a cap
of angular radius A at this point and that this cap would not overlap any of the
original K(A) caps which contradicts the assumption that K(A) is maximum.

The problem of determining an upper bound for K(A} has been generalized
to n dimensions. This bound will provide a bound for N*(2A, 1) by the argument
given above. It is shown [2] that

A summary of results concerning the determination of K(A) and the inverse
problem in n-dimensions appears in a paper by the author [3].

REFERENCES
1. L. FEJES TOTH, On The Densest Packing of Spherical Caps, American Mathematical

Monthly, Vol. 56, pp. 330-331. 1949.
2. R. A. RANKIN, The Closest Packing Of Spherical Caps in N Dimensions, Proc. Glasgow

Math. Assoc., Vol. 2, p. 139, 195.
3. FLORES AND GREY, Reference Signals For Character Recognition Systems, IRE Trans-

actions on Electronic Computers, Vol. EC-9, March 1960, p. 57-60.

N-Dimensional Volume

Problem 59-2, by MAURICE EISENSTEIN AND M. S. KLAMKIN.

Determine the volume in A^-space bounded by the region

This problem has arisen from the following physical situation: a series-parallel
circuit of N resistances is given where each of the resistances Ri are not known
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exactly but are uniformly distributed in the range R< ± «*/?,-(«» <K 1). We wish
to determine the distribution function for the circuit resistance

To first order terms

The probability that the circuit resistance lies between R and R + AR will be
proportional to the volume bounded by the region

Special cases of the problem arise in the two following examples:
(A) A sequence of independent random variables with a uniform distribution

is chosen from the interval (0, 1). The process is continued until the sum of the
chosen numbers exceeds L. What is the expected number of such choices? The
expected number E will be given by

where Fi is the probability of failure up to and including the rth trial. Geo-
metrically, Fi will be given by the volume enclosed by

For the case L = 1,

(D. J. Newman and M. S. Klamkin, Expectations for Sums of Powers, American
Mathematical Monthly, January, 1959, pp. 50-51.)

(B) What is the probability that N points picked at random in a plane form
a convex polygon?

If we denote the interior angles by 0,, the probability that the polygon will
be convex will be proportional to the volume of the region given by

The normalizing constant will be given by the volume of the region

(we are assuming that the angles are uniformly distributed).
Solution by I. J. Schoenberg, University of Wisconsin.

Let Ba denote the volume of the ra-dimensional polyhedron
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where Also, let bi . If
F(u) is a function of one variable u, we define the operator Ln by

and

where (ai , «2 , • • • , ou) runs through all the 2n combinations of the n quantities
bi , bz , • • - , bn . For example,

It follows that

If F(u) is sufficiently smooth,

where B denotes the box defined by (1). To establish (4), we assume it holds
forn — 1, 2, • • • , n — 1. Then

Since (4) is valid for n = 1, it is valid for all n by induction.
One consequence of (4) is that LnF(u} = 0 whenever F(u) is a polynomial of
degree less than n. By a known theorem of Peano, we can write

where the kernel $„ may be described as follows: If we define the truncated power
function x+ by

then

where on the right side x is treated as a parameter and Ln operates on the variable
u. Since
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Eauation (8) shows that is the area of the intersection of the box B
with the hyperplane To see this more clearly,
we choose F(x) in (8) such that

i.e.

Equation (8) now reduces to

Since the operator Ln commutes with the integration,

Writing B = Oia2 • • • an and observing that if
and Ba = B. We may now write our final result as

As an example, let us consider the hypercube when a, = 1 and
Then also br = and (10) gives

where A" is the ordinary nlh order advancing difference operator of step h = n w.
Now, if w = 0 then B* = 0 and (11) gives

which is a known relation. If u> = n ll'2 then again for the ordinary power function

Passing to the truncated power function only one term of the left side of (12)
drops out so that

Finally (11) gives for w = n 1/2 the value

which is also known.
The expression (7) shows that $B(o;) is what has been called elsewhere1 a

spline curve of degree n — 1, i.e. a composite of different polynomials of degree
n — 1 having n — 2 continuous derivatives while ̂ """(a:) has jumps at the
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"knots" x = bai -f • • • + bai . The Laplace transform of 3>n(x), however, has
the simple form

This transform is particularly useful if we wish to discuss the limit properties
of the distribution $n(x) for large n.

Remark: No originality is claimed for the matters presented here. The operator
Ln was studied by M. Frechet, T. Popoviciu, and others. Laplace transforms
of the kind obtained here were already derived by Laplace himself. Finally,
G. Folya's Hungarian doctoral dissertation is devoted to an intensive study of
the transforms (13).2 As a matter of fact, Polya starts from the problem of
determining the volume B« and also stresses the relations with probability theory
which are obtained if n is allowed to tend to infinity.

Also solved by Larry Shepp who shows that the probability that an n + 1
sided polygon be convex (the angles of which are assumed uniformly distributed)
is

This generalizes the result of H. Demir for the case n = 3 (Pi Mu Epsilon
Journal, Spring 1958).

Editorial note: E. G. Olds in "A Note on the Convolution of Uniform Distribu-
tions," Annals of Mathematical Statistics, v. 23, 1952, pp. 282-285, gives a
derivation for the probability density function for a sum of independent rectangu-
larly distributed random variables.

1 Bull. Amer. Math. Soc., vol. 64 (1958), pp. 352-357.
- Mathematikai es Physikai Lapok, vol. XXII.
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7.1 Catastrophe Theory

THE TOY AIRPLANE CATASTROPHE*

JOHN C. SOMMERERt

Abstract. A new demonstration of an elementary catastrophe using a simple machine, in the spirit of
the Zeeman machine, is given.

Two of the simplest demonstrations of elementary catastrophes, the Zeeman
catastrophe machine and buckling of a solid beam, are mechanical in nature. Com-
plete treatments of both, as well as the seven elementary catastrophes, are to be
found in [1] and [2]. Briefly, the catastrophe machine is catastrophic because of the
tendency to minimize the potential energy function of an elastic substance under
tension. Conversely, the buckling of a beam is catastrophic because of the minimiza-
tion of the potential energy of a subtance under compression and shear. It therefore
seems reasonable to suppose that elastic substances under applied torques can be
made to behave catastrophically as well. In fact, experiments with rubber bands and
an easily constructed machine show this to be the case. This apparently new demon-
stration of an elementary catastrophe rounds out a family of similar mechanical
examples which are extremely simple and amenable to verification.

The model. The elementary catastrophe of interest is the cusp, and it will be
useful to review its salient features. The cusp potential function is

where x is the behavior variable and a and b are the controls. The behavior of any
system governed by the cusp is confined to the three dimensional behavior surface
(Fig. 1)

The properties of the cusp follow immediately from this behavior surface. They are: 1)
bimodal behavior for some values of the controls, 2) discontinuous changes in
behavior for small variations in the controls, 3) hysteresis in behavior for a reversal of
a change in the controls (processes L and M), 4) divergence in behavior for small
variations in initial conditions (processes N and O), and 5) inaccessible portions of the
behavior surface.

It is often observed that the twisting of a rubber band, as in the winding of a toy
airplane, can proceed only to a limited extent before doubling over occurs. If the band
is elastic, or nearly so, the doubling over can occur suddenly or over the course of
several twists. The application of a catastrophic model immediately suggests itself.

The first support for such a model was gained in a simple experiment using
the length of the band and the number of twists in it as controls, and noting the
values at which doubling over occurred. A roughly "cuspish" bifurcation set resulted,
indicating that more precise measurements would be worthwhile.

The apparatus. An apparatus was assembled (Figs. 2 and 3) which allowed the
quantitative measurement of the torque and tension applied to the elastic. Constant
tensions were obtained by hanging small weights from a horizontally constrained

* Received by the editors April 1978.
t Department of Systems Science and Mathematics, Washington University, St. Louis, Missouri 63130.
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FIG. 1

platform (A) to which one end of a test elastic (B) was attached. The measurement of
torque was more difficult, due to the number of rotations required to reach values
inducing catastrophic behavior. A relatively simple mechanism was devised to do this.
The remaining end of the elastic under test was attached to a torsion shaft (C) which
was affixed to a free pointer assembly (D). This assembly was connected through a low
friction bearing to a second, controlled, pointer assembly (E). In addition, the torsion
shaft was connected by a standard elastic (F) to the controlled pointer assembly. Thus
the free and controlled pointers could rotate relative to one another, under the
constraint of the standard elastic. This entire assembly was attached to the fixed body
of the appartus (G) through a second low friction bearing, and rotated freely relative
to it. A protractor fixed to the body of the apparatus allowed the determination of the
angular separation of the two pointers.

By rotating the controlled pointer, a torque was applied through the standard elastic
to the torsion shaft and the test elastic. Because the torque was not applied through a
rigid structure, a separation related to the magnitude of the torque developed between
the two pointers. A calibration curve to convert angular separation to torque was
easily obtained by applying known torques.

The experiments. The behavior of the test elastic was studied in two types of
experiment. In the first type, fixed tensions were applied to single strands of surgical
rubber, and the torque necessary to produce doubling over was noted, as was the
reduction in torque required for straightening. Properties 1), 2), and 3) of the cusp
catastrophe became immediately apparent. In addition, the values of tension and
torque producing catastrophe generated a characteristically shaped cusp bifurcation
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FIG. 2

set graph. The particular shape of such graphs (e.g. Fig. 4) varied considerably from
elastic to elastic, which might be expected, in view of the nonuniformity of such
materials. A specific bifurcation set graph could be used to predict the subsequent
behavior of the same elastic in a second type of experiment, however.

An arbitrary torque was applied to an elastic, and the tension was reduced
incrementally by removing weights until discontinuous behavior was observed (process
2). Tension was again increased until straightening occurred. In some cases a parti-
cularly good test of the cusp hypothesis was obtained by varying the controls in the
vicinity of the cusp point of the bifurcation set. It was possible to produce discontinuous
doubling and continuous straightening by setting the initial torque only slightly above
the lowest value in the bifurcation set; thus the instantaneous reduction in torque
accompanying the doubling over brought the system to a pleatless region of the
behavior surface allowing a continuous return to the initial conditions. The success of
this test depends on a dynamic relationship between the control and behavior variables
which is not required by, but does not exclude, the cusp catastrophe.
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FIG. 3

The behavior variable might be identified with the average number of rotations per
unit length of the elastic in the single stranded portion. This characterization of the
system varies continuously over most of the control plane, yet changes discontinuously
across a range of unobserved values when the elastic doubles over. This corresponds
to property 5) of the cusp. Four of the five cusp properties have been shown. The
remaining one, divergence, is not easily demonstrable since no control splits the
bifurcation set, and the simultaneous variation of both controls is not practical with
the equipment used.
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The cause of the catastrophic behavior, as in many other mechanical systems,
depends on the presence of friction. As torque on the elastic is increased, the
elemental contributions to the total are not evenly distributed around the axis of
suspension, due to the finite thickness and asymmetry of the band. This asymmetry
yields a region where the elastic axis deviates helically from the axis of suspension.
When the helical tension becomes greater than the tension in the linear portion, the
loops of the helix contract on one another. The total potential energy of the system
decreases, since the process is spontaneous.

Because the "toy airplane catastrophe" can be quantitatively demonstrated using
simple equipment and because it is a three dimensional cusp, rather than a higher
order catastrophe, it is more pedagogically valuable than the buckling beam. It also
has the advantage over the Zeeman machine that it exhibits the feedback-like prop-
erties resulting from an interdependence of the controls found in many areas of
application of catastrophe theory. Yet, unlike many of these applications, the under-
lying physical laws are well known, and the necessary measurements can be made
easily with relative precision.

Acknowledgment. The author is grateful to the referee and Professor E. Y. Rodin
of Washington University for their valuable suggestions.
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CATASTROPHE THEORY AND CAUSTICS*

JENS GRAVESENt

Abstract. In this paper it is shown by elementary methods that in codimension two and under the
assumption that light rays are straight lines, a caustic is the catastrophe set for a timefunction. The general case
is also discussed.

1980 AMS Mathematics subject classification 58C28.

Key words, caustic, catastrophe theory, envelope

1. Introduction. Since its appearance, there has been an intense debate about
catastrophe theory, not about the mathematical contents of the theory, but about some of
the applications of the theory in biology, medicine, sociology, etc. In this paper catastro-
phe theory is applied to the theory of caustics. This is considered to be one of the more
sound applications of catastrophe theory, and it has not been questioned. It has long been
known empirically that a caustic has only a finite number of possible shapes. Catastrophe
theory has confirmed this result and has even shown that the known lists of stable caustics
is complete.

In his book Stabilite structurelle et morphogenese, Rene Thorn explains [7, p. 63]
how the elementary catastrophes occur as singularities of propagating wave fronts. Later
Klaus Jahnich [8], among others, examined this case more closely and gave a complete
proof of Thorn's conjecture.

In this paper we present an elementary proof of the special case, where the problem
can be considered as two-dimensional and the light rays as straight lines. In addition the
general theorem will be made plausible.

The paper is an extension of notes prepared for a seminar on catastrophe theory
arranged by the Association of Mathematics Teachers in Denmark, summer, 1979.1 wish
to thank my teacher Professor Vagn Lundsgaard Hansen who planned the course and
encouraged the present work, and my fellow instructors Martin Philip Bends0e and
Henrik Pedersen for valuable discussions.

2. The classification theorem. We start by stating Thorn's theorem. A more exten-
sive introduction to catastrophe theory can be found in Callahan [2], [3], and proofs in
Zeeman and Trotman [8].

Let/: R" x W ̂  IR be a smooth function, i.e. of class C°°. We let x = (x,, • • • , xn)
denote an element belonging to IR" and y = (y}, • • • , yr) denote an element belonging to
Ur. Define Mf c RH x Rr by

)

Generically Mf is an /--manifold (r-dimensional surface in U.n+r) because it is the
null-space of n equations. Let

be the map induced by the projection R" x Rr —>• Rr. The map x/is called the catastrophe
map of /. Let F denote the space of smooth functions on (R"+r, with the Whitney

* Received by the editors June 25, 1981, and in revised form August 26,1982.
tMathematical Institute, The Technical University of Denmark, DK-2800 Lyngby, Denmark.
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C°°-topology (Two functions are close if the values of the functions as well as the values of
the derivatives are close, see Zeeman and Trotman [8, p. 316] or Callahan [2, p. 222].

THEOREM 1 (Thorn). Ifr s 5, there exists an open dense set F* c F called the set of
generic functions. Iff is generic, then:

(1) Mf is an r-manifold.
(2) Any singularity ofxfis equivalent (see below) to one of a finite number of types

called elementary catastrophes.
(3) \jis locally stable with respect to smallpertubations off.
Two maps x:A/ ^-» IKT and x''-M' -"»^' are equivalent if there exists diffeomorphisms

h:M ^ M and kMr /-»IRrsuch that the following diagram commutes:

A diffeomorphism can be considered as a curvilinear change of coordinates. The set of
curvilinear singular points (x, y) e Mf of x/ is denoted Af and is given by

The image x/(A/) 's ca^ed tne catastrophe set and is denoted Df. If x/ and x/- are
equivalent and h, k are the associated diffeomorphisms then Mf = h(Mf), A^ = A(A/)
and Df = k(Df), so locally ZJyand Df have the same shape.

3. The envelope. We next investigate the possible shape of a caustic formed by a
given bundle of light. In order to solve the problem by elementary methods we make two
assumptions. Assume the existence of a direction in which the light bundle is translation
invariant, and that the speed of light is constant. Then the light rays are straight lines.
Thus we consider a family of lines in IR2.

Let a, b and c be real smooth functions denned on an open interval / c R, such that

FIG. l
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For every x c / let L(x) denote the straight line in IR2 given by the equation

a(x)u + b(x)v = c(x) (where (u, v) are the coordinates in (R2).

Assume that x e / and x + Ax e /, with Ax ̂  0. We will find a condition that ensures
that L(x) and L(x + AJC) intersect. By the mean value theorem there exist real numbers £,
f, 77 between x and x + AJC such that

If (u, v) is a point on both L(x) and L(x + Ax) we then have

Since Ax ^ 0 these equations are equivalent to the equations

It is well known that the latter pair of equations has a solution if

This is fulfilled when AJC is sufficiently small, because det („-*.) ^ 0 and a, b, a' and b' are
continuous. The point of intersection is given by

If we let Ax —- 0, then £, f and 77 converge to x, and by continuity, the point of
intersection between L(x] and L(x + Ax) converges to

We see that (w(x), v (x)) is the unique solution to the equations
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The curve / ^ U*:x —* (u(x), v(x)) is called the envelope of the family (L(x))x^, of lines.
We have shown that for sufficiently small Ax, L(x + AJC) will intersect L(x) near the
envelope. If the lines, as in our case, represent light rays, this implies that the light is
concentrated on the envelope, i.e. the envelope is the caustic for the light rays.

4. Caustics as catastrophe sets, the special case. Besides describing light as rays, we
can describe light as waves. If the waves are known we get the rays as the normals to the
wavefronts. Thus the caustic of a wavefront is the envelope for the normals.

Let V be a wavefront in IR2, that is, locally it is nothing but a C°°-curve (u, v):
I /-» U2:x —<• (u(x), v(x)). As we are only interested in local properties, we assume that all
of V is given by (it, v). We can now define the timefunction T associated to V.
T measures the time it takes a light ray to travel from a point belonging to V to a point
belonging to IR2. We have assumed that the speed of light is constant so we can use
distance as a measure for time. We define

Clearly Tis smooth on / x (IR2\F). If we let C denote the caustic of the wavefront Kwe
have

THEOREM 2.

Proof. The last equality is simply the definition of DT; see §2. The first equality is
seen in the following way:

and

For («, v) e !R2\Fwe have that

is equivalent to

By rearranging we get
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or equivalently

The last equations give the envelope for the normals to K, because the normals to the curve
(«, v):x —* (fi(x), v(x)) are given by the equation

or equivalently

As the caustic of Fis the envelope for the normals to F, the theorem follows.

5. The general case. Let Kbe a wavefront in IR3. Locally it is a C^-map y:/2 ^* IR3:
x —* y(x). (x = (*,, x2) denotes a point belonging to 72 = / x / c R2 and y = (>>,, y2, y^)
denotes a point belonging to IR3.) As in the preceding paragraphs we are only interested in
local properties, so we assume that all of Kis parametrized by y.

The only assumption made is the existence of a (smooth) timefunction T associated
to K, i.e. for a point y c Kand a point y c IR we can determine the time it takes light to
travel from y to y. Tcan be regarded as a smooth function: 72 x IR3 ̂  IR.

Let y £ !R3. We wish to determine the points y £ Remitting light passing through y.

According to Fermat's principle a light ray travels in such a way that the time taken
is the least possible. The points y(x) emitting light hitting y are thus given by the
equations

By definition, this means that (x, y) belongs to MT. We conclude, y e IR3 is hit by a light
ray from y (x) if and only if (x, y) c x r ' (y) • It is clear that the light is concentrated on the
critical values of XT, so tne caustic is the catastrophe set DT.

6. Fermat's principle and the timefunction. We will give a brief discussion of the
timefunction. In order to do this we state Fermat's principle or the principle of least time,
(see [4, Chap. 26]). The most common variant is: "Out of all possible paths that it might
take to get from one point to another, light takes the path which requires the shortest
time." To give the precise statement we must look at the space of all paths between the
two given points. Then "light takes a path which is a critical point for the timefunction."
Similarly we have that light emitted by a wavefront takes a path to a given point which is a

FIG. 2
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critical point for the timefunction, this time defined on the space of all paths between the
wavefront and the given point.

From Fermat's principle we get the well-known facts that in a medium with constant
speed of light the light rays are straight lines and that light rays are orthogonal to the
wavefronts. From Fermat's principle we can also deduce the laws of reflection and
refraction.

Consider a wavefront V. In the preceding paragraphs we said that V has a
timefunction if for a point x belonging to Fand a point y belonging to IR3 it is possible to
determine the time it takes light to travel from x to y. So in order to define a timefunction
for V there must only exist one path from x to y which is a critical point for the
timefunction. Notice that this unique path or light ray is not necessarily a light ray
emitted by the wavefront V.

We will consider two examples that indicate that catastrophe theory also applies to
some systems without a timefunction.

Consider an arrangement with a mirror; see Fig. 4. Clearly it is impossible to define a
timefunction for this system, because there are two possible light rays from y(x) to y so

7(x, y) would be doublevalued. But if we only consider light rays or paths which do not hit
the mirror, it is possible to define a timefunction. The light rays emitted by the wavefront
V plus the nearby ones do not hit the mirror, so we can use Fermat's principle and the
discussion in the preceding paragraph also applies to this case.

Consider an arrangement with a lens; see Fig. 5. Again it is impossible to define a
timefunction, because T(\, y) would be multivalued. In the first example we disregarded

FIG. 3

FIG. 4
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all but one light ray between every pair of points (x, y) belonging to V x R3. If we do this
in this example, we would ignore light rays arbitrarily close to the remaining light ray, and

thus make the use of Fermat's principle impossible. Instead, we observe that we can define
a timefunction if we only look at points y outside the image of V. We conclude that the
part of the caustic outside the image of V is the catastrophe set for a timefunction. By
choosing another wavefront V with image disjoint from the image of K, we see that all of
the caustic locally is the catastrophe set for a timefunction.

The two examples above do not contradict Fermat's principle. They simply indicate
that it is impossible to define a timefunction depending only on the initial points, which is
required in our application of catastrophe theory. It is of course possible to define the
timefunction on the set of paths and thus make use of Fermat's principle.

7. Conclusion. We have shown that if a given bundle of light has a timefunction,
then the caustic is the catastrophe set of this timefunction. Theorem 1 now gives that a
stable caustic, locally, only can have a finite number of shapes (stable with respect to
small pertubations of the timefunction, i.e., small pertubations of both the wavefront and
the media). We have to be careful, because to a given point on the caustic we shall look
locally not only on the caustic around the point, but also on the wavefront around the
points, from which the light rays come. It is possible that caustics from different locations
on the wavefront appear on the same spot, so we can get a caustic, consisting of several
elementary catastrophe sets. If we use that stable intersections between surfaces in 1R3

only occur as intersections between two or three 2-dimensional surfaces or between a
1-dimensional and a 2-dimensional surface, we get that around a given point the shape of
a stable caustic must have one of the basic forms shown in Figs. 6-13; see Callahan [3] or
Poston and Stewart [6, Chap. 9].

We have shown that a stable caustic locally at most can have one of the eight shapes
mentioned above. In [5] K. Ja'nich shows that all eight shapes can be realized as caustics.
Some of them appear in photos in M.V. Berry [1], which also contains a discussion of the
unstable caustics.

FIG. 5

FIG. 6. The fold. FIG. 7. The cusp.
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FlG. 8. The swallow tail. FIG. 9. The hyperbolic umbilic.

FIG. 10. The elliptic umbilic. FIG. 11. Intersection between two folds.

FIG. 12. Intersection between three folds. FIG. 13. Intersection between a fold and a cusp.
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THE NUMERICS OF COMPUTING GEODETIC ELLIPSOIDS*

J. C. ALEXANDER1

Abstract. The formulae for calculating ellipsoidal approximations to the earth's shape are analyzed.
Numerical convergence and error analyses are done, as well as an investigation of the propagation of
observational errors.

Key words, geodetic ellipsoids, reference ellipsoids, numerical error analysis, fixed-point iteration, delta
method

Introduction. According to Webster's dictionary, geodesy is "the branch of ap-
plied mathematics concerned with measuring, or determining the shape of, the earth..."
(Webster [1966]). As a first approximation, the earth is an axially symmetric rotating
ellipsoid, and all global geodetic computations are referred to such an ellipsoid. The
following equations, given in classic form, are basic to the determination of such an
ellipsoid (Heiskanen-Moritz [1967, Chap. 2.9], Moritz [1980]):

where

with

In current practice, values for a,u,GM, J2 are given and a value for e is derived
numerically. There are three mathematical points raised. The first is the existence and
uniqueness of e. The second is the convergence and accuracy of the numerical proce-
dure used to determine e. The third is the propagation of observational errors in a,u,
GM, J2 through the computation. Put another way: how many significant digits are
there in e given the numbers of significant digits in a, w, GM, /2? Such questions arise in
the manipulation of any kind of data, and the purpose of this note is to make a case
study of this particular example.

Geodetic ellipsoids-discussion of the equations. Since 1930 all global geodetic
computations have been referred to a reference ellipsoid (Heiskanen-Moritz [1967,
Chap. 2.12]). Computations for an ellipsoid can be done in closed form, and more exact

'Received by the editors January 15, 1984, and in revised form September 16, 1984. This work was
supported in part by the National Science Foundation.
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determinations of the earth's shape (geoidal undulations—up to +150 m; see e.g.
Lerch et al. [1981]) use an ellipsoid as a zero point. A reference ellipsoid is not, for
example, a least squares best fit of the earth's surface, but rather is the solution to a
type of free boundary problem.

The shape of an axially symmetric ellipsoid is specified by two parameters, the
equatorial and polar radii, a,b, respectively. Usually a and either the (first) eccentricity
e=\ll — b2/a2 or the (linear) flattening/= 1 — b/a are used. Given four parameters:
a,e specifying the shape, the rotation rate to, and the product GM of the universal
gravitational constant times mass, there is precisely one gravity field with parameters
GM and to. for which the ellipsoid is an equipotential surface (Heiskanen-Moritz [1967,
Chap. 2.7] (a gravity field is the sum of a harmonic gravitational field depending on
GM and a rotational "centrifugal field" depending on <o). In particular, the second
(unnormalized) coefficient J2 of the spherical harmonic expansion of the gravitational
field is given by (l)-(3). (Remark: e' is called the second eccentricity.)

Thus a geodetic ellipsoid is specified by four parameters. Modern practice is to
specify a, to, GM, J2 and derive e, and hence the shape. Thus arises the stated problem.

There are two, somewhat conflicting, purposes for such a computation. On the one
hand, observed values for a, to, GM, J2 are regularly improved. The rotation rate is
determined from astronomical observations. The radius a comes from satellite laser
altimetry measurements, and GM, J2 come from analysis of artificial satellite dynamics.
Ellipsoids fitting observed data are called mean ellipsoids. Current best values are listed
in Table 1. On the other hand, a working geodesist needs a fixed reference ellipsoid.
Such ellipsoids are fixed at irregular intervals by international agreement. The values of
a, to, GM, J2 are set by fiat and all other geodesic parameters are derived. Such
ellipsoids are called reference ellipsoids. The current standard, Geodetic Reference
System, 1980 (GRS 1980), is listed in Table 2. Reference ellipsoids are also occasionally
used in cartography (Snyder [1982]).

To effect computations, (l)-(3) can be solved for e or e2 as a series in the other
parameters and truncated at some point (Heiskanen-Moritz [1967, Chap. 2.10], Chen
[1981]) (this last reference also tabulates earlier geodetic reference systems). More
standard is to isolate the e2 term in (1) and iterate to a value for e2 (Moritz [1980]). A
machine or compiler version of arctanis used and the iteration is performed until the
desired number of digits stabilizes. Although such a convergence criterion is dangerous
in general, we shall see it works in the present case provided enough digits are carried
in the computation. In reference to the last point, the reader can verify with a hand
calculator that five digits are lost in the subtraction in (2). Thus to obtain, say, 12
significant digits me2, a. machine with a precision of at least 17 digits must be used. We
rearrange the computation so that the calculation is as precise as the machine.

Simplified formula. All the results are based on simplifying (2)-(3). If we sub-
stitute (3) in (2) to eliminate e', we find
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The analytic expressions comes from routine simplification. The power series can be
obtained from the power series for arcsin and \/l-z or as follows. Let

One differentiation yields

Write eh(e) = g'(e) and differentiate again:

Now work backwards, starting from the well-known binomial expansion

The power series in (4) converges and represents v for e2< 1.
We can now answer the first question raised in the introduction. All the coeffi-

cients in (4) are positive. Thus for 0<;e2<l, (4) is a monotonically increasing function
of e2. Thus so is (1). Moreover, J2 ranges from -uV/3GM for e = 0 to 5 as e-»l. For
this range, as one would hope, a, w, GM, J2 uniquely determine an ellipsoid.

Numerical analysis. Let x = e2. The iterative procedure is thus

Let xm denote the (unique) fixed point and let Then

for some xn between xx and xn. A crude calculation yields x00 = e2 = .0067 and for xn

near xm, Ax n + 1 =-2.2xlO~ 3 Ax n . Linear convergence is standard for fixed-point
iterations (Householder [1970], Rice [1983, Chap. 8]). Thus near xx the convergence is
linear and about - Iog10(2.2 X10~3) = 2.6 digits per iteration are gained.

Moreover the Axn oscillate between positive and negative values, so xx lies
between any two successive xn. Thus digits which have stabilized in the iteration are
indeed valid.

If v is truncated to a polynomial, xx is changed (by the truncation error); the
convergence of the iteration is unchanged. Moreover we can control the truncation
error. The coefficients of (4) are easily seen to be decreasing in magnitude. Thus if the
series is truncated after n — \ terms, the truncation error is bounded by the geometric
series
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for jc<.01. Since the value of v at xx is greater than .25, the number of significant
digits can be guaranteed a priori. For x < .01 a crude, but easy, working rule is the
following: if the series is truncated after the term in x N, the relative truncation error is
less than .5 X ifj~ (2 ;v+1) (i.e., the number of significant digits is at least 2N+1).

The appropriate use of v also minimizes roundoff error, assuming the calculating
machine rounds elementary arithmetic operations in an acceptable manner. There is no
subtraction to chew up significant digits. In particular, if the truncated v is calculated
using the Newton-Horner method, the roundoff error should be within the last digit of
the machine numbers (Wilkinson [1964]).

All in all then, the numerical process is highly stable and converges at an accepta-
ble rate. In the next section but one, we investigate the conditioning.

Algorithm. The previous section indicated the following algorithm will accurately
compute e2. For JV = 3 or 4, the parameters can be stored from (4) and the iterative
loop programmed on a small hand-held programmable calculator.

ALGORITHM for computing X=E**2 to 2*N+1 significant digits, given OMEGA,
A, GM, J2 (machine precision ;> 2N + 2 digits).

Compute and store coefficients C(K), degree 0 through N
C(0)=4/15
DOlW,K=l,N

100 C(#)=C(A:-l)*((l + l/(2*A:))**2)/(l + 5/(2*A:))
Input parameters and initialize

INPUT OMEGA, A, GM, J2
g = 4*(OMEGA**2)*(,4* *3)/(15*GM)
*=6*/2

Iterative step
200 V=C(N)

DO 300, K=N-1,0, STEP -1
300 V=X*V+C(K)

Xl = Q/V+l*J2
IF|Al-A'|<.5*A>(10**(-2*Ar-l))GOTO400
X=Xl
GO TO 200

Output
400 OUTPUT XI

STOP

In Moritz [1980] geodetic parameters are computed to 12 significant digits. Such
an accuracy is more than enough for geodetic computations; 12 digits in e2 will give the
polar circumference to within .00001 cm (exercise). For demonstration purposes, we
calculate from Table 2 in 9 iterations using quadruple precision with N = 14:

<?2= .006 694 380 022 903 415 749 574 948 586.

The concomitant reciprocal flattening

= 298.257 222 100 882 711 243 162 836 6.

Thus the polar radius of the earth is 1 part in 298.257... less than the equatorial radius.



174 ALEXANDER

Observational data. We consider a mean ellipsoid, which is fit to observed data,
and investigate the amount of accuracy available. The data are assumed to be indepen-
dent and normally distributed about their mean values, as listed in Table 1. The value
of J2 is never available directly from satellite dynamics, but occurs in all formulae in the
product a2J2 (Kaula [1966]).

For data which have very small relative standard deviations, the "delta method"
(Rao [1965]) is useful. If A'is a normal random variable with mean ju(A') and standard
deviation a ( X ) , the linear function mX+b is also normal with mean mp(X) + b and
standard deviation \m\o(X). The standard deviation transforms as the absolute value of
the derivative. If o(X) is so small that there is only a negligible difference between
f ( X ) and f(n(X))+f'(n(X))(X-ii(Xy), then f ( X ) is essentially a normal variable
with mean/(ju(X)) and standard deviation \ f ' ( ^ ( X ) ) \ a ( X ) . In other words, standard
deviations transform as absolute values of differentials. The multivariate version is also
valid.

Accordingly, we multiply (4) by a2, differentiate in differential form, take absolute
values of the differentials and solve for o(e2) (vr denotes the derivative with respect to
x = e2). We obtain

Accordingly a(e2)/e2 is about 6 X 10 7; there are 6 4- observationally significant digits
in e2. There are also 6 + observationally significant digits in/"1.

Gravity (Heiskanen-Moritz [1967, Chap. 2.8]). The normal gravity is the magni-
tude of acceleration due to gravity on the ellipsoid. The formula for the normal gravity
at geographic lattitude <i> is

where

are the normal gravities at the equator and pole, respectively. Here
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The interested reader can verify that

and calculate from Table 1 that ya = 9.780 322 m/sec2 and yb = 9.832 182 m/sec2, both
values with a standard deviation of 4x 10 ~6.

TABLE 1
Mean ellipsoid.

Parameter Value o Units

a2J2 440 420.14XlO5 .36X105 m2

CM 3 986 004.40XlO8 .05 XlO 8 m3/sec2

a 6378138 1 m
w 7 292116 XlO"1 1 1X10"11 rad/sec

References: Values of a2J2 and CM came from Goddard Earth Model L2 (GEM L2) gravitational field
solution with speed of light = 299 792 458 m/sec (private communication from F. J. Lerch, see also Lerch et
al., [1982], however the values there correspond to an artifically fixed value of a = 6 378 145 m); value of a
comes from GEM 10B (Lerch et al. [1981]); value o f« comes from the current UT2 standardization and thus
represents a smoothed value—the error is a bound on the smoothing effects.

TABLE 2

Geodetic reference system 1980.

Parameter Value Units

a 6378137 m
CM 3 986 005 XlO 8 m3/sec2

J2 108 263 XlO- 8 —
w 7 292 115 XlO" 1 1 rad/sec

Reference: Moritz [1980],
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CHESS CHAMP'S CHANCES: AN EXERCISE IN ASYMPTOTICS

PETER HENRICI AND CHRISTIAN HOFFMANNf

The model. The following problem was recently proposed by J. G. Wendel
[1]: "In one form of chess match 2« games are played, wins count 1 point each,
draws %, losses are worth 0. In order to win the match, the defender needs only
score at least n, while the challenger must achieve at least n + ^. Suppose that
the two players are of equal strength, and that the probability of a draw is a
constant d. Prove or disprove: the defender's chance of keeping his title is an
increasing function of 8." The present paper aims at a detailed discussion of this
chance as a function of both 8 and n, with special regard to its asymptotic behavior
as n -» oo.

The solution of Alam and Seo. One published solution of the above problem
essentially runs as follows [2]. Let An = An(8) denote the probability that both
players score exactly n points. Since the players are of equal strength, the prob-
ability that a fixed player scores more than n points is |(1 — An). Therefore the
probability of the defender's keeping his title is

Thus PB(<5) is an increasing function of <5 if and only ifAn(5) is an increasing function
of 5.

To compute An(8), we note that the probability of a win by either player is
3(1 — 8). Thus the probability that there will be k wins by the champion, fe wins
by the challenger, and 2n — 2k draws will be

times the number of ways k wins and k losses of the defender can be distributed

* Received by the editors October 22, 1974.
t Seminar fiir angewandte Mathematik, Eidgenossische Technische Hochschule, Zurich, Switzer-

land.

among In games. There are possibilities to distribute the wins, and for each

such possibility there exist \ possibilities to distribute the losses. Thus

the desired number of ways is
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The probability An(8) is the sum of all these probabilities from k = 0 to k = n;
thus

Differentiating with respect to 6, we see that the derivative A'n(6) satisfies

so that An(S), and hence Pn(<5), are decreasing functions of 6 near 0. Therefore
the assertion that Pn(S) is increasing in [0, 1] is false for all n > 0.

An integral representation. Using the well-known integral

we readily see upon expanding the binomial that

This could be obtained methodically by noting that, in hypergeometric notation,

and using one of the standard integrals for the hypergeometric function.
The representation (4) is very convenient for discussing the function An(d),

both from an elementary and (because n occurs only as an exponent) from an
asymptotic point of view. Differentiating under the integral sign, we get

Because the integrand is positive save at one point at most, we conclude from (6)
that A'n(6] > 0, 0 ^ <5 ^ 1, for all n > 0. (This was noted without proof in [2].)
We have

and it follows from (2), (4) or directly from the probabilistic interpretation (all
games drawn) that An(\) = 1. We already know that A'n(Q) < 0 and thus may draw
two simple conclusions:

(i) There exists a unique 8 > 0 such that An(6) = An(0). In terms of chess,
this is the smallest positive probability of a draw for which the chances of the
defender's keeping his title are at least as good as if the probability of a draw
were zero. We denote this by S* and call it the smallest safe value of 8.

( i i ) The derivative A'n(6) has precisely one zero in (0, 1) , at 6 = 6n. say, which
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thus is the unique point where An(6) achieves its smallest value. From the defender's
point of view, this is the most dangerous value of 6.

Our purpose in the remaining sections will be to study the behavior of £*,
<5n, and An(Sn) as n -> oo.

The smallest safe value of 8. By Stirling's formula (see, e.g., [3, p. 188]),

Thus An(Q) -» 0 for n -> oo, as is probabilistically obvious, although the conver-
gence perhaps is not as fast as expected. For d = <5*, the asymptotic behavior
of An(5] should match that of An(Q). For each fixed (5e(0, 1), the function (j)(t)
= \d + (1 — d)t\ has the relative extrema 0(1) = 1 and ( />(—!) = |1 — 2d\. Asymp-
totically, only the first extremum is relevant. Setting

we obtain

n -> oo. The integral now is in a form suitable for applying Watson's lemma (see,
e.g., [3, p. 253]), the result being

A comparison with (8) yields lJ\ — 5 — 1 or d = f. We conclude that

From the point of view of chess, it is interesting that the smallest safe value of S
is asymptotically independent of n. Independently of the number of games played,
the defender should keep the probability of a draw at least equal to f in order to
make sure that his probability of winning the match at least equals the probability
of winning if there were no draws.

The most dangerous value of 5. For fixed d > 0, an application of Watson's
lemma to the integral (5) yields

as n -» oo. A more elaborate computation, taking into account nondominant
terms in the asymptotic expansions, yields

which we would also get by differentiation (not permissible in general) of the
asymptotic formula (10). Thus for every fixed 6 > 0, A'n(6) is ultimately positive,
showing that 6n -> 0 for n -> oo. Because for d -> 0 the two maxima of the function
</>(r) at t = ± 1 are of approximately equal strength, a single application of Watson's
lemma does not suffice for a more accurate evaluation of 6n.

Let 0 < 6 < j, and let 4>(td) = 0. We split the integral (5) into its positive and
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negative parts,

where

The integral / , (<5)canbe dealt with by the substitution (9). If 6 is any function of n
which tends to zero as n -» oc, Watson's lemma yields

To evaluate /2(5), we set

As f runs from 1 to — 1 6 , s runs from 0 to co, and the integral takes the form

Evaluation by Watson's lemma now yields

for any 6 = d(n) such that l im n_X ! i)(n) = 0. If 6(n) = 6n, then I^d,,) = /2(dJ, and
the two asymptotic expressions must be equal. This requires

hence

A more precise computation, taking into account higher terms, yields

It remains to evaluate An(6n). Again there is the difficulty that (10) is invalid
neacS = 0. Splitting the integral (4) into the integrals from - 1 to t6 and from ts to 1,
and evaluating each integral separately (reversing the sign of t and making the
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substitution (13) in the first integral), we find for the minimum value of An(d)

In view of (8) we see that for large n the defender's advantage for 5 = <5n drops
by nearly 50 % below the advantage for <5 = 0; moreover, the most dangerous value
of 6 tends to zero only slowly as n -» oo.

Numerical values. It is of interest to compare the asymptotic values found
above to numerical values found by directly solving the equations An(S) = An(0)
and A'n(S) = 0. The values in the tables below are selected from output generated
by a root-finding procedure combining bisection and quadratic inverse interpola-
tion ; A^d) and A'a(5) were computed from their polynomial definition (2). Machine-
drawn graphs of Pn(6) for selected values of n are shown in Fig. 1. Also shown are the
points (<5*, Pn(0)) and (<5n, PB(<5n)), as well as the curves

and

(n ^ 1) describing their asymptotic behavior.

FIG. 1
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TABLI; 1
The smallest safe value <>/ 6

" <>; on Ajiii - 'Mm

2 0.699470 0.703125 0.375000
5 0.730189 0.731250 0.246094

12 0.742050 0.742187 0.161180
100 0.749061 0.749062 0.056348
500 0.749812 0.749812 0.025225

TABI.F 2
The most dangerous value of <5

n | <>. 114) _4,(,\:i

2 0.253122 0.226460 0.228015
5 0.154742 0.150424 0.136865

12 0.086662 0.086048 0.085163
100 0.016436 0.016432 0.028444
500 0.004130 | 0.004130 0,012642

RF.FERENCHS
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APPROXIMATING THE GENERAL SOLUTION OF A DIFFERENTIAL EQUATION*

JAMES F. McGARVEYt

Abstract. A method for obtaining a series approximation to the general solution of a first order
differential equation is presented. An error estimate is included. An example is given which shows how the
method may be used in a neighborhood of a branch point.

Introduction. Suppose that one were given the differential equation dy/dx =f(x, y),
where/is analytic in x and>>, and that one wanted an approximation of known accuracy to
the general solution. One might want this for its own sake, or in a variety of situations
including the following:

1) A set of integral curves is required valid for the range 0 £ x ^ xm.dx for the set of
initial conditions y(0) = y0, where ymn &y0S, >>max .

2) A solution is required in the neighborhood of a branch point of y(x).
3) One wants to know if the integral curve through a given point (x0,ya) has a

branch point for.x0 £ x ^ jtmax, and if so for what value of x.
A method for obtaining a series approximation to the general solution of 1) is

*Received by the editor August 14, 1981, and in revised form December 8, 1981.
tNASA—Goddard Space Flight Center, Greenbelt, Maryland 20770.
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presented herein. Illustrative examples are included which cover all of the above cases.
The method consists of generating a sequence of functions of x and y by a recursion
relation starting with an arbitrary function of y only. The procedure for getting term
n + 1 from term n is a three-step operation consisting of differentiating term n with
respect to y, multiplying the result byf(x,y), and integrating this result over x. All of the
terms required for an error estimate are obtained in the process.

The procedure has the advantage of converging in cases where Picard approxima-
tions diverge. Another advantage is that the terms of the sequence tend to be similar to the
function/(jt,>>) itself. For instance, if/is a polynomial in x andy, then each term is also.

The applicability of the method naturally depends on the function f(x,y). For a
complicated function, the process may very well get bogged down, in which case one
would have to resort to numerical methods.

The general solution of the first order differential equation

is a function of x and y; z = z (x, y). The function z is the solution of the partial differential
equation

A series approximation to z may be obtained as follows:
A sequence of functions T[n] (n = 0,1, 2, 3, • • •). where T[Q] is a function of y only

and all other T[n] are functions of x and y, is generated by the recursion relation

or equivalently

In the above, and in the following text, subscripts denote partial differentiation.
Let S[n] be the partial sum of the first n + 1 7"s, i.e.,

Applying the property of T[n] given by (4), it may easily be shown that

S[n] is an approximation to z. To evaluate how close an approximation it is, let the
slopes of the level curves of z and S[n] be compared.

For constant z, we have

For constant S [ n ] , we have

S[n] converges to z, if
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for (x,y) such that.!?[«] = constant.
For some cases a convergence criterion may be obtained directly as is shown by the

following example.
In order to actually carry out the operations indicated in the previous discussion, it is

sufficient that each of the T[n] be differentiable and that/(x,_y) be analytic in x andy.

An illustrative example. Let the given equation be

and assume that solutions are required for initial conditions y(Q) = y0>2.
For T[0], we choose T[0] = y, which is consistent with the asymptotic form of (10)

for large^. The first four terms of T[n] and T[n]y then are as follows:

An estimate for the convergence behavior is obtained by finding a condition on x and
y that will be sufficient to ensure that both the T[k] and the T[k]y are monotonically
decreasing.

By inspection, it can be seen that for A: a 2

We then have

and

Performing the indicated operations (first interchanging the order of integration and
summation), gives the following:
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But for n = 3fc - 1 - m and k S m £ 2k - I

and all of the above maximum values are <2 for all k S 2.
Equations (18) and (19) may therefore be replaced by the inequalities

TABLE 1

y y Convergence
x Num. int. S3 - 4 % error factor

0.0 4. 4. .00 .00
0.5 4.24689 4.24688 .00 .09
1.0 4.7338 4.7334 .01 .26
1.5 5.458 5.454 .06 .46
2.0 6.42 6.41 .17 .67
2.5 7.61 7.59 .33 .87
3.0 9.05 9.00 .52 1.04
4.0 12.64 12.53 .87 1.30
5.0 17.21 17.02 1.05 1.49

10.0 54.88 54.38 .91 1.84
20.0 204.97 204.21 .37 1.96

which are equivalent to

The condition on x and y sufficient to ensure monotonically decreasing T[k] and
T[k]y is obviously
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Numerical results. For initial conditions x = 0, y = 4 the values of y obtained by
setting S[3] = 4 and solving by iteration for y for given x are compared with values
obtained by numerical integration in Table 1. Values of 5'[3]y, r[3]r, and error in slope
are given in Table 2. Up to x = 5 there is a positive correlation between the errors and the
convergence factor (x2/y + x/y1}, but the converse is true thereafter.

TABLE 2

% error
x y Siy T}y in slope

0.0 4. 1.000 .0000 .00
0.5 4.24688 .030 .000 .02
1.0 4.7334 .056 .002 .18
1.5 5.454 .074 .006 .56
2.0 6.41 .084 .011 1.02
2.5 7.59 .085 .015 1.41
3.0 9.00 1.082 .018 1.66
4.0 12.53 1.067 .018 1.73
5.0 17.02 1.050 .016 1.51

10.0 54.38 1.012 .005 .46
20.0 204.21 1.002 .001 .07
50.0 1254.09 1.000 .000 .01

100.0 5004.04 1.000 .000 .00

TABLE 3

x yS - .39375 dy/dx = -St/Sf x + \/y Error in slope

.50 .500 2.63 2.50 .13

.45 .354 3.35 3.28 .07

.40 .114 9.23 9.21 .02

.35 -.0106 + 1.295 . 2 2 2 - 1 3 . 3 4 9 .228-13.388 - . 0 0 6 4 1 . 0 3 9

.30 -.0206 + 1.430 .179-12.274 .189-12.319 -.0)0 + 1.045

A second solution valid in a neighborhood of the branch point at y = 0 may be
obtained by interchanging the roles of x and y. The recursion relation (3) is replaced by

and T[0] is now a function of .x only.
Choosing T[0] = x, gives

Rxpanding the integrand in a series and integrating term by term, we have

Applying the recursion relation (26) again gives
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For an approximation to the general solution, we take T[0] plus the first two terms of
T[ 1 ] and the first term of T[2]:

This approximation is now used to trace an approximation to the integral curve
through the point ('/2, '/>) with x decreasing to .30 by steps of .05. Since S(]/2, '/>) = .39375,
the relation between x and y is

For given values of x, (31) is simply a polynomial in y. The values obtained are given
in Table 3. The error in the slope was obtained by evaluating Sx and Sy and computing
dy/dx = —Sx/Sr which was then compared to x + 1 /y.

WHICH ROOT DOES THE BISECTION ALGORITHM FIND?*

GEORGE CORLISSt

A student of elementary probability may be amused by an application of
probability to numerical analysis.

Let / be a continuous function on the closed interval [a, b] such that
f(a)f(b) < 0. Then / has at least one root a on (a, b). The well-known bisection
algorithm [1, p. 28] generates a sequence {[ak, bk]} of intervals on which a root is
known to lie. Let a0 = a,b0 = b, and define ck = (ak + bk)/2. If f ( c k ) = 0,ck = a, and
the algorithm terminates. If f(ak)f(ck)<0, ae(ak,ck), so let [ak+l,bk+i] =
[ak,ck]. For the other possible case, if f(ak)f(ck)>0, ae(ck,bk), so let
[ak+i,bk+i] = [ck,bk]. \bk — ak\ = 2~k\b0—ao\, so that the bisection algorithm is
guaranteed to converge to some root of / on [a, b].

If / has more than one root on [a, b], a problem in [1, p. 35] asks which root
the bisection algorithm usually locates. If / has n distinct, simple roots xl < x2 <
• • • <xnon[a, b](f(xi) = Qandf'(xi)7

iO), then itis well-known that the bisection
algorithm finds the even numbered roots with probability zero. This paper shows
that the probability of finding the odd numbered roots is uniform.

Let Cn denote the class of continuous functions which satisfy f(a)f(b)<0
with exactly n distinct, simple roots on (a, b). Let the roots of/e Cn be denoted by
Xi<x2< • • • <xn. We assume that the locations of the roots are independent and
distributed according to a uniform random distribution on [a, b]. Let x0 = a and
xn+i = b. Let Pin denote the probability that the bisection algorithm converges to
the ith root of /, given that /e Cn. Let Q,,n denote the probability that

* Received by the editors September 8, 1975 and in revised form December 18, 1975.
t Department of Mathematics and Statistics, University of Nebraska, Lincoln, Nebraska 68588.
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for i = 0, 1, • • • , n, given that fe Cn.
We first note that n is odd and that Pin = 0 for all even i since at each step, the

bisection algorithm discards the subinterval of length (bk — ak)/2 which contains
an even number of roots. Hence for even i, xt will be found if and only if
ck ~ (®k + bk)/2 = xt at some step of the algorithm.

THEOREM. For n odd,

If i is even, Pin = 0 was shown above. The proof for i odd is by induction on n.
PI,I = 1, for if / has only one root on [a, b], the bisection algorithm is guaranteed
to find it.

Assume that

for all odd m < n.

Qi.n - ( . j/2" since it is equal to the probability that i of n trials (roots) land

on the left half of [a, b}.
If Xj<c0 = (aQ+bo)/2<Xj+i for some fixed even /, then the probability of

finding x, is given by

since the bisection algorithm will proceed on the interval [a1,bi] = [c0, b0], which
contains n —j roots of /.

Similarly, if xt <c0<xi+l for some fixed odd/, then the probability of finding
Xj is given by

Then

where we assume that £2 = £" =0. Hence,



188 DRAGER

We have shown that if a function / has n distinct, simple roots, the bisection
algorithm is equally likely to find each odd root.
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A SIMPLE THEOREM ON RIEMANN INTEGRATION,
BASED ON CLASSROOM EXPERIENCE*

LANCE D. DRAGERt

Abstract. At the Georgia Institute of Technology, a computer program is used in freshman calculus which
graphically illustrates upper and lower Riemann sums and generates values of their differences. The students
often observe that the differences A, seem to be proportional to I /«, where n is the number of subdivisions; but
this is only approximate.

We make this rigorous by showing that

for nice functions, where V is the total variation. The proof is simple, and is a nice illustration of the ideas of
asymptotic analysis, and several other techniques of analysis.

One of the computer programs used as a classroom demonstration in freshman
calculus at the Georgia Institute of Technology is a program called RIEMANN, which
graphically illustrates the upper and lower Riemann sums. It also tabulates the difference
of the upper and lower Riemann sums to illustrate that the difference becomes small as
the number of subdivisions increases.

In fact, the students often spontaneously observe that the difference appears to be
proportional to l/« (where n is the number of subdivisions). A few of the more observant
will point out that this is not quite correct and the difference is nearly, but not precisely,

'Received by the editors March 9, 1982, and in revised form August 10, 1982.
tDepartment of Mathematics, Texas Tech University Lubbock, Texas 79409.
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proportional to \/n. We make this observation precise by giving a result on the asymptotic
behavior of the difference of the upper and lower Riemann sums.

To fix our notation, we consider a continuous function/: fO, 1 ] — K. If n is a positive
integer, we can partition the interval into n equal subintervals, each of length Ax = I//?.
The endpoints of the subintervals are

where xt = i/n. We refer to [x,_,, x,] as the rth subinterval. Define

Then

is the upper Riemann sum, and

is the lower Riemann sum.
We set

and we wish to study the behavior of An as « —>• °°. The first column of Table 1 tabulates
the values of AB for a few values of n, for the function/(x) = sin (4irx), and one can
immediately see that An is approximately proportional to l/«. To check this idea we
tabulate «An, which is not constant but seems to approach something near 8, so AB

becomes more nearly proportional to 1/n as n increases. (There is an approximation,
besides round-off error, involved in computing the values in Table 1. We will discuss this
issue later.)

TABLE 1

n An «An |8/n-A, | « 2 | 8 -nA, |

10 0.77963 7.79633 2.0367 x 102 20.367
20 0.39021 7.80422 9.7888 x 10'3 78.310
30 0.26590 7.9772 7.5972 x lO'4 20.513
40 0.20000 7.9999 1.6391 x 10"7 0.0010681
50 0.15984 7.9918 1.6397 x 10~4 20.497
60 0.13297 7.9781 3.6533X10"4 78.911
70 0.11423 7.9958 5.9895 x 10~5 20.545
80 0.09999 7.9999 1.6391 x 10~7 0.085449
90 0.08886 7.9975 2.8118 x 10'5 20.498

100 0.079921 7.99213 7.8670 x 10'5 78.673

To analyze this situation, we will impose a restriction on our function /, which is
satisfied for most functions encountered in freshman calculus, and for any function for
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which the computer program could draw a reasonable picture. This condition says that
the montonicity of/changes only finitely many times.

Condition (FMC). There are points

so that/ is (weakly) monotone on [r7_,, tj],j = 1, • • • , K + 1.
We may also assume that no tj may be removed without destroying this property. We

set V = 5^+1 |/(f,-_,) - f(tj) \. This is the total variation of/on [0,1], in the sense of the
theory of functions of bounded variation. (For sin (4irx), K = 8). I f / ' is continuous,
V~f0

l\f'W\dx.
If/is monotone on [0, I ], the values A/, and w, are taken on at the endpoints of [*,_,,

xt] and the sum H"_, M, - m, = nAB telescopes to |/(0) - /(I) | - V. So for a monotone
function, AB = V/n. We will see below that in general AB S V/n, and we wish to measure
how much AB deviates from V/n. (Column 3 of Table I tabulates | An - V/n |.)

THEOREM. Let f satisfy condition (FMC). Iff is Holder continuous of order a,
0 < a £ I. (i.e., there exists C>0so that \f(x) - f ( y ) \sC\x - y\a), then

Iff has a continuous second derivative, this can be improved to

The last statement, for example, means there is a constant C > 0 so that

so An lies inside an envelope closing down on V/n. This is the same as saying
n31 A, - (I /«) V\ = n 21 «An - V\ is bounded. (This quantity is displayed for the function
f ( x ) = sin (4irx) in column 4 of Table 1.)

To prove the theorem, first note that if Y = {t0, • • • , t K + l ] \j {z} and Yis numbered
as 0 = y0 < y\ < • • • < yq = 1, we have V = £Xi l/Cft-i) - f(vi) I - Indeed, if z = <y- this
result is trivial, while if *,-_, < z < /y we have replaced the term!/((,-_i) — /((/) |in the sum
defining Kby |/(f/_i) — /(z) | + |/(z) — f ( t } ) \. But since/is monotone on [*,-_,, ?;], this
telescopes back to|/(^-_]) — f(t,) \. Applying this argument repeatedly, we can add any
number of points to {/„, • • • , t k + l ] to get {y0, • • • , y9] and still have £]',i |/(>»/_i) —
f(y,)\-v.

To simplify the notation, assume K = 1, i.e., there is only one point f , where the
monotonicity of/changes. Suppose /, e [ x k _ l , x k ] . We want to estimate | V - «An|. We
have, by our previous observation,

while nAn = ZXi M, - m,. If/is monotone on [x,_,,x,], M, and m, occur at the endpoints
and Mt - m, = |/(jc,-_i) - f ( x , ) |. So, if we compute K - «An, the terms in each sum
corresponding to the intervals [x,_t, x,], i ^ k, cancel out. If t{ is an endpoint of [x t_,,
xt] all the terms cancel, while otherwise we have
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Since the monotonicity changes at t } , one of Mk or mk occurs at ?, while the other occurs at
one or both of the endpoints xk..{,xk. Thus (Mk - mk) cancels with one of the two other
terms. Let J t( l , n) denote the endpoint in the term which does not cancel. (If t, is an
endpoint, set x (1, n) = /,.) We thus have

If K > 1, the same analysis may be applied as soon asn is large enough that each (jc,-_i , xt)
contains at most one t-r Then,

(1)

where x(j, n) is an endpoint of the interval [jc,-_,, Jt,] containing tj(mihx(j, n) = tr if tj
is one of the endpoints). (1) implies, in particular, that V - «An ^ 0 so An S: V/n. But if
we can estimate |/( /,) - f(x(j, n ) ) \, we will get more precise information.
Since | tj - x(j, n) \ s Ax = l/«, if/is Holder continuous of order a, we get

Thus,

for large n, and for all «if we increase C. In this case,

or

If/' exists, each t} (j = 1, • • • , K) must be a critical point of/, since the monotonicity
changes at tj. Iff" is continuous, we can use Taylor's formula with remainder of order 2 to
show|/« ; .)-/(x)|£Cir,-x|2 .

In this case

for large n, so

(2)

Indeed, it is easy to see that if/' is Holder continuous of order a, An = V/n + 0(\/n +a).
I f / i s infinitely differentiate, we can use Taylor's formula in (1) to develop a

complete asymptotic expansion of AB involving the rather messy functions tj - x(j, n) of
n. This does not seem interesting enough to write out, except to note that it does show that
(2) cannot, in general, be improved to an error of 0(\/n4) unless all/"(^) = 0, and this
argument can be extended to higher derivatives.

Using our theorem above, and a somewhat more delicate analysis using Taylor's
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theorem on each subinterval, we can find the asymptotic behavior of [/„ and Ln. In fact, if
/satisfies condition (FMC) and has a continuous third derivative,

To write a computer program to calculate A,,, Va, £„, for fairly general functions, one
has to approximate the values of A/,, m,. An obvious approximation scheme (used by
RIEMANN and in computing Table 1) is the following: for some fixed integer/?, divide
each of the subintervals [ jc ,^ , ,x , ] intopsubintervals, of length 1 /pn, which we refer to for
convenience as the "sub-subintervals," and take the maximum and minimum of the
values of the function at the endpoints of these sub-subintervals as the approximate values
for MJ, nij. Let us denote these approximate values by M^p, mip and the corresponding
approximations for Ua, /.„, An by Un<p, Ln_p, Anp. To analyze the error in these approxima-
tions, suppose/has a continuous third derivative and satisfies condition (FMC), and that
n is large enough that each subinterval [*,-_,, xt] contains at most one f, . If/is monotone
on [x,_,, jc,] the approximations M,p, miip will be exact (since we are checking the values
of/at Xj_t and x,), while if tj E [ x k _ t , xk] one of the approximations Mlip, fhif will be
exact, and the other will be/(£), where £ is one of the endpoints of the sub-subinterval
which contains t}. Thus|£ - t}\ S. \/pn and, by Taylor's theorem, |/(£) - f(t,) \ S
c/p2n2. Since at most K of the approximations are not exact, we have | Un - Un<p \ s
Kc/pV, or £/„,„ = Un + 0(1/p2n3). Similarly !„,„ = Ln + 6>(l/pV) and An,p = A. +
O(l/p2n3). As expected, for n fixed, the approximations become more accurate as
p-+ oo, while for a fixed p, Lnf = Ln + O(l/«3) and A,., = An + 6>(l/«3). Thus the
approximations satisfy the same asymptotic formulas (2), (3), (4) as AM , Un and £„, and it
is no accident that the values in Table 1 show the correct behavior, even though they are
only approximate.

The asymptotic formulas (3), (4) show that Un = f^f(x)dx + O(l/n), and
Ln = /0 f(x)dx + O(\/n) and the approximations Unip, ZH>P satisfy the same formulas.
Thus these are not very attractive numerical integration schemes. If we let
Am = 1/2(1. + [/„), An,p = l/2(Ln,, + Vn<p) (3) and (4) give us

so Anj looks more attractive as a numerical integration scheme, since Anp =
f0

}f(x)dx + O( l / « 2 ) . I fwe takep= 1,

is just the familiar trapezoidal approximation. For purposes of practical numerical
integration, there would not be much point in taking p > 1, since computing An<p will
involve much more computation, with no improvement in the order 6>(l/«2) of the error.
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A NOTE ON THE ASYMPTOTIC STABILITY OF PERIODIC SOLUTIONS OF
AUTONOMOUS DIFFERENTIAL EQUATIONS*

H. ARTHUR DE KLEINE

Abstract In this note we provide two examples to illustrate that the asymptotic stability of a periodic
solution of an autonomous differential equation is not necessarily determined by the sign of the real part of the
eigenvalues of the linear variational equation.

1980 AMS mathematics classifications. 34C2S, 34D05

Key words, asymptotic stability, periodic solutions, linear variational equation, Floquet theory, character-
istic exponents

1. Introduction. In this note, two examples of relatively simple ordinary differential
equations are given to illustrate that the asymptotic stability of a periodic solution of an
autonomous differential equation is not necessarily determined by the sign of the real part
of the eigenvalues of the linear variational equation. These examples were obtained
during a summer research project at the Lawrence Livermore Laboratory MFE
Computer Center involving the study of numerical algorithms for highly oscillatory
differential equations [3], [12]. Many numerical schemes for solving ordinary differential
equations use the eigenvalue structure of the linear variational equation to estimate the
stability of the solution in question. The examples presented here were used to estimate
how long the algorithms would continue before the instability was detected. These
examples may be of use to numerical analysts because both the characteristic roots of the
linear variational equation and the characteristic exponents are easily calculated.

Motivation for these examples comes from a study of diffusively coupled chemical
oscillators, where the stability question has received considerable interest. See for
example, [4], [6], [7], [9], [11], [14]. Such a system can be represented by a pair of
equations,

The first example given represents a pair of stable limit cycles coupled by a nonstabilizing
coupling and the second example represents a stable oscillator and an unstable oscillator
coupled by a stabilizing coupling.

2. Preliminary considerations. Let x(t) be a nonconstant periodic solution of period
r of the n-dimensional autonomous differential equation

We assume that Fis continuously differentiable. It is well known [2], [5], [15] that the
asymptotic stability of x(t) is determined in part by the stability properties of the null
solution of the corresponding linear variational equation

Let Y(t) be the fundamental matrix solution of the variational equation satisfying

'Received by the editors April 10, 1983, and in final form September 30, 1983. This research was
supported by the Northwest College and University Association for Science (University of Washington) under
Contract DE-AM06-76-RL02225 with the U.S. Department of Energy.

tMathematics Department, California Polytechnic State University, San Luis Obispo, California 93407.
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the initial condition F(0) = /. By Floquet's theorem, Y(t) =P(t)e'B where P(t) has
period T in t, P(r) = /, and B is a constant « x n matrix. The characteristic roots of B,
called the characteristic exponents of (2) and denoted by /tt, ( /= 1, 2, • • • , «), are
uniquely determined mod(27r//T). The real part of the characteristic exponents deter-
mines the asymptotic stability of Y(t). Note that x'(t) satisfies the variational equation
(2) and thus 0 is a characteristic exponent. We let MI = 0.

THEOREM. If Q is a simple characteristic exponent of the variational equation and
all other characteristic exponents have their real part less than -y < 0, then x ( t ) is
orbitally asymptotically stable with asymptotic phase. If the real part of one of the
characteristic exponents is greater than zero, x(t) is unstable.

As the Floquet theorem is constructive, the characteristic exponents are determined
only after the fundamental matrix Y(t) is known and there is no obvious relation between
the characteristic exponents of (2) and the eigenvalues of Fx{x(t)}, henceforth denoted by
\i(t) (/ = 1, 2, • • • , «). Hale [5] gives an example by Markus and Yamabe [10] of a
continuous 2 x 2 periodic matrix A(t) with constant eigenvalues, \(t) = [-1 ± /V7]/4,
such that the zero solution of the linear equation y' = A(t)y is unstable. We remark in
passing that Coppel [2] provides a direct approach to the analysis of 2 x 2 linear systems.
Laloy [8], [13] has provided an extension of the Markus and Yamabe example.

These observations prompted a search for an example of an autonomous differential
equation (1) with an unstable nonconstant periodic solution (where zero is a simple
characteristic exponent of the linear variational equation (2)) such that the real parts of
all eigenvalues of the variational equation (2) are less than -7 < 0.

The dimension of such an example will necessarily require n £ 3.

By Jacobi's formula

where

and the partial derivatives are evaluated at x(t). Thus, mod (2iri/r),

I fn = 2,

An example, extending both the Markus and Yamabe example and the Laloy
example, will be used in the construction of our model. The matrix

is a fundamental matrix solution of the linear equation
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where

The characteristic exponents of (3) are a and /? while the eigenvalues of A(t) are

These eigenvalues have a negative real part if and only if a + f3 < 0 and y2 > -afi.
Furthermore, they are complex if (a - /3)2 < 4y2.

The stable and unstable sinusoidal oscillators,

(4)

and

(5)

are pedagogical examples [1] of stable and unstable limit cycles, respectively. For both of
these examples the limit cycle can be represented by ( x ( t ) , y ( t ) ) = (cost, sint). A
transformation to polar coordinates provides an analytical solution of these equations and
a direct analysis of the stability properties. The corresponding linear variational equations
are given by

and

From our previous observations, ( — sin t, cos t) and (e"2t cos t, e 2t sin /) are solutions of
the first variational equation; X,(r) = \2(t) = -1 are the corresponding eigenvalues.
Similarly, (-sinf, cos?) and (e2'cost, e2'sint) are solutions of the second variational
equation while X}(t) = \2(t) = +1 are the eigenvalues.

3. First example. Consider two stable sinusoidal oscillators coupled by a nonstabi-
lizing linear difference coupling,
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The function (x,y, |, rj) = (cos t, sin t, cos t, sin t) is a periodic solution. The corresponding
linear variational equation is given by

Again making use of our previous observations, the matrix

is a fundamental solution of the variational equation and the eigenvalues are -1, -1,
K - 1, K - 1. For 0 < K< 1, all eigenvalues are negative and yet the periodic solution
(x,y,£, rj) is unstable.

4. Second example. Consider a stable oscillator and an unstable oscillator coupled
by a stabilizing difference coupling,

The function (x, y, £, jj) = (cos t, sin t, cos t, sin /) is a periodic solution. The corresponding
linear variational equation is given by

A fundamental solution for this variational equation is given by

where <j> = [K/(K - 4)]e~2'(cost, sint) if K £ 4 and te~*(cost, sint) if K = 4. The
periodic solution in question is stable if and only if K > 2. The eigenvalues of the linear
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variational equation are given by -1, -1, \ - K, 1 - K. Thus for 1 < K < 2 all
eigenvalues are negative, but the periodic solution is unstable.
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APPROXIMATING FACTORIALS:
A DIFFERENCE EQUATION APPROACH*

A. C. KING* AND M. E. MORTIMER^

Abstract. An algebraic derivation of Stirling's formula for «! is developed based on the asymptotic
solution of a difference equation.

Key words, factorial, asymptotic expansion, difference equation

Elementary methods of approximating factorials are of interest since they not only
provide an indication of how quickly the factorials grow, but also usually contain some
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interesting mathematical ideas. The following novel method, based upon a difference
equation, provides the first few terms in the asymptotic (Stirling) approximation to the
factorial »! = T/2Trnn+l/2e~" • • • . By definition,

and this can be rewritten as

The R.H.S. is now a product of factors all less than 1 and thus converges to zero; to
discover how quickly or slowly this product converges some algebraic rearrangements
are necessary. Define

Thus,

From this equation it is possible to conclude

To obtain a more precise estimate of A(«) it is convenient to work with the logarithm
of the difference equation. Writing A(«)=logA(«), we have

Expanding the logarithm for large n using the standard log(l + x) result,

This asymptotic difference equation is now solved subject toA(«)-»-ooasM-»oo.
First a solution to the homogeneous problem

is found. By inspection this has the solution A(«)=Constant = C.
The construction of a particular solution for the equation is more difficult. The

standard finite difference method is algebraically complicated so the following method
is used. Let



NUMERICAL ANALYSIS 199

where the a's are constants and the b(n)'s are a sequence of functions which, to give an
asymptotic series with A(n)-» - oo as n -» oo, must satisfy bl(n)> b2(n)> • • • > bm(n)
> • • • and at least Z)L(n)-> oo as «-> oo. Equation (1) now takes the form

The solutions to this set of equations are again found by inspection, subject to the
conditions above.

Order 1.

Order \/n.

Note that after expansion of this logarithm for large n this choice of b2(n)
introduces an error of magnitude l/4«2 + l/6n3 which must be accounted for when
solving at order l/n2.

Order l/n2.

This process can be continued to a higher order, in fact 64(«) = log(l + l/«2), but
sufficient terms have now been obtained for the purposes of this article. We have

Writing C for ec and using

we finally obtain

or

Having obtained this approximation for n!, the standard method for evaluating C is to
use the result
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9. Mathematical Economics

THE BEST TIME TO DIE*

MARGARET W. MAXFIELDt AND NAOMI J. McCARTYt

Abstract. When a new tax law is subjected to a simple mathematical analysis, some strange effects are
discovered.

This elementary mathematical analysis will not qualify anyone as a tax expert,
even in the area of Material Participation. However, the analysis does reveal some
strange effects of the law that may not have been anticipated when the law was enacted.

Recently the Congress [1] undertook to improve the situation of a surviving spouse
who, despite "material participation" in a family farm or business, might see most of
the property included in the gross taxable estate of the first spouse to die. The Material
Participation (MP) exclusion is an optional election, in case various eligibility require-
ments are met. It calls for the exclusion from the gross estate of the first spouse to die
of the sum of two quantities:

(i) the excess of the joint interest over the adjusted (at 6% simple interest, it turns
out) consideration for acquisition of the property (usually what the property cost),
multiplied by 2% for each year of material participation, but not more than 50%;

(ii) the adjusted consideration furnished by the surviving spouse.
The excluded amount is subject to two limitations, one relative, the other absolute:

the amount excluded may not exceed half the joint interest and it may not exceed
$500,000.

Since even if no MP election is made the surviving spouse is entitled to share in the
joint interest in proportion to the consideration that spouse furnished initially, we
deduct this amount and ask whether the net (remaining) excluded amount is positive,
that is, whether MP election will result in any (additional) exclusion.

It is useful to state quantities in units of C, the initial "consideration" for acquiring
the property. For instance, instead of V, the "joint interest" or value of the property
as appraised at time of death of the first spouse to die (or alternate valuation date), we
use the "appreciation" A = V/C.

With quantities expressed in this scale, and assuming that neither limitation is
reached, we then have the inequality

y = (*-s)(A-o^o,
where:

s = proportion of initial consideration provided by the surviving spouse. This
proportion is often zero or very small, and is always less than 0.5 for MP to
be elected. 0^5 §0.5.

t = 1-1- 0.06T, where T is the number of years of the joint tenancy, from initial
acquisition of the property to the death of the first spouse to die. In parts of
this paper the variable corresponding to time will be t, and in other parts T,
depending on notational convenience.

* Received by the editors October 22, 1979.
t Department of Management, CBA, Kansas State University, Manhattan, Kansas 66506.
t Department of Accounting, University of Tulsa, Tulsa, Oklahoma 74104.
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x = min (0.02 [7, 0.5), where U is the number of years of MP. In the important
special case treated here, U is equal to T, so that x and t are related by
* = min((r-l)/3,0.5).

A = value of joint interest, in C units, where C was the initial consideration.
Y = net exclusion due to MP election expressed in C units, provided the limita-

tions do not apply. The net exclusion is made up of (i) x(A — t), plus (ii) st,
less the survivor's own share, sA.

Consider the Y-surface in (t, s, A, Y)-space given by the function

The hyperplanes 5 = a constant and A - a constant, for choices of these parameters,
intersect the Y-surface in a trace in the (t, Y)-plane.

If A § 2.5, then the trace is the parabolic arc

from

FIG. 1. Constant A less than 2.5. A = 2. For fixed s, Y = YI is parabolic.

If A >2.5, the trace is made up of a parabolic segment

from (t, Y) = (35 + 1, 0) to (2.5, (0.5 - s ) ( A - 2 . 5 ) ) , and a linear segment

from (2.5, (0.5-s)(A - 2.5)) to (A, 0). See Fig. 2.
We note that the limits in Y-value, as t approaches 2.5 from the left and from the

right, respectively, are equal:
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Then the Y function of t for fixed A and 5 is continuous between t = 3s +1 and t = A,
its domain of positivity.

FIG. 2. Constant A greater than 2.5. A = 3,4, 5, with s = 0. Y= Y i is parabolic f o r t S 2.5; Y= Y2 is linear for
t>2.5.

In case A > 2.5, however, Y fails to be dmerentiable with respect to t at t = 2.5,
since the left- and right-derivatives are not equal:

From the fact that the function Y has a maximum with respect to t, where
t = 1 + 0.06T, we see that from the (admittedly limited) point of view of MP exclusion
there is an optimal time T after acquisition of the property for the first spouse to die!
This optimal T value is f - (i-1)/0.06, where

that is,

The maximum excluded value for this time is

This state of affairs—an optimal time T to death, with net MP exclusion Y decreasing
for longer times—is unusual in tax. We would expect the exclusion to increase with T
up to a plateau and then remain constant for larger T values. In fact, we note that the
law calls for the percentage x to do just that—to increase linearly, by 2% for each year
of MP, up to a value of 50%. If that percentage, x, were applied to a constant, we would
have the usual tax picture. The decrease in exclusion for T>f is caused by the fact
that the percentage x is applied to the excess, in C units, (A-t), where the deducted
base value t depends on T.

years.
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In our first analysis the appreciation A was held fixed, but what if A increases with
r? Suppose that the joint interest measured in C units increases at a simple interest
rate (0.06 +a), greater than the 6% adjustment provided for in the law:

Then we have

The parabolic segment Y\ of Y as a function of T is negative between T = 0 and
T = 50s, with a minimum at T = 25s. It is positive and increasing for T between 50s
and 25 years. The linear segment Y? for T>25 has positive slope (0.5-.9)0. Again, Y
is continuous for T> 50s, but is not differentiate at T = 25. See Fig. 3.

FIG. 3. Increasing A, simple interest model. A = 1 +(O.Q6 + a ) T , with a = 0.1.

By assuming a simple interest growth for A, we have obtained a more familiar tax
picture. The excluded amount Y does not decrease with T after becoming positive.
However, there is no horizontal plateau, since Y continues to increase after T = 25.

FIG. 4. Increasing A, compound interest model. A =(\ + a ) 1 , for a -- 0.06, 0.08, 0.10.
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If A grows at a compound interest rate, a reasonable hypothesis for a successful
farm or business, then we encounter exponential functions. Let A = (1 + a)T. Then

In Fig. 4 the Y functions are graphed for a = 0.06, 0.08 and 0.10, with s = Q.
Again, Y is continuous within the domain of positivity, but it is not differentiable at
T = 25.

It is tempting to try second-guessing Congress. What did they have in mind? It is
instructive to go back over this analysis and question how far we could have advanced
without mathematical symbolism. The law was written in English, or what passes for
English in law jargon. The semiotics of that language, even allowing for a few numerical
percentages, are inadequate for such an analysis.

One question that arises whenever a tax concession is introduced is the effect on
revenues. How much revenue must the government forego because of MP election?

In case the MP election is made in a particular instance, the amount of the net
exclusion depends on s, T, A and x, and these variables are interrelated. For instance,
there is probably a negative correlation between s and T because women, who have
longer life expectancies than their husbands, have recently had greater potential for
contributing larger shares s toward property than formerly. Since wealth and longevity
tend to support each other, A and T probably are positively correlated.

The MP election is not automatic, so estimation of lost revenue would require a
probability measure, and that measure would have to be conditioned on the probability
that no formal arrangement had been established before death.

Since it looks impossible to obtain even a ballpark estimate of lost revenue a priori,
we might question whether an estimate can be found empirically now that the law is
in effect. This, too, appears hopeless, as there is no way to isolate effects of the MP
provision from the effects of other changes in the tax picture, to say nothing of changes
in the ambient economy.

REFERENCE

[1] Internal Revenue Code of 1954, §§ 2040c, added to by the Revenue Act of 1978, §511.

POSTSCRIPT

The Material Participation provision was dropped from the tax law shortly after it was instituted.

INFLATION MATHEMATICS FOR PROFESSIONALS*

EDWARD W. HEROLDt

Abstract. The personal finances of professional scientists, engineers and mathematicians are greatly affected
by inflation. A simple mathematical model is of considerable value in planning ahead. To prevent financial
collapse before the end of life, the model should be used many years before retirement and re-applied
annually. A numerical example shows the need for a financial plan and the utility of the model.

* Received by the editors June 3, 1980, and in final form November 18, 1980.
t Consultant, 332 Riverside Drive East, Princeton, NJ 08540.
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The writer's 1979 paper [1] on the effect of inflation was directed to the engineer
facing retirement, and created considerable interest. Other professionals confront
financial problems similar to those of the engineer and are equally able to interpret a
mathematical approach. We here supplement the 1979 paper by expanding the
mathematical solution to improve its utility during pre-retirement years. The approach
taken uses a differential equation, rather than the more awkward conventional mathe-
matics of finance which uses discrete-interval relationships. Use of continuous functions
permits greater sophistication and an analysis which is better suited to the inflation
considerations covered herein.

The appropriate differential equation states that the change in capital with time
equals the after-tax income minus the expense. With inflation, if living expense rises
exponentially, it will often be found that both capital and income will eventually be
used. The objective of planning is to prevent the financial endpoint from occurring
before the end of life. The solution to the differential equation provides the planning
tool needed. Because inflation rates, sources of income and life styles change, each
family or individual should make appropriate assumptions and review their finances
annually.

The notation to be used is as follows. Passage of time will be measured in years,
designated as n.

Sn - capital accumulation at year n.
S0 = capital at start of calculation.
/„ = after-tax return on capital.
/(«) = after-tax income from all other sources, as a function of n.
E ( n ) = living expense as a function of n.

The differential equation is

which has a solution

During earning years, I ( n ) ordinarily exceeds E(n) and capital accumulates, with
the exponential outside of the largest brackets the dominant term. After retirement,
because of inflation, E(n) may rise faster with time than does /(n); capital is used up
and, in time, the integral becomes negative and~Sn goes to zero. The reader may make
his or her own prognosis as to the future form for the income and expense functions,
taking inflation into account. Before retirement, (2) is applied to find the accumulated
capital up to the point of retirement. A second application, with new initial So, income
function and expense function, will determine conditions for financial survival
thereafter.

For illustrative purposes, it is useful to assume simple, easy-to-integrate functions,
which we will now undertake. If inflation causes living expense to rise at the con-
tinuously compounded rate if, then the expense function is

where E0 is the initial living expense at n = 0. It should be noted that the continuously-
compounded inflation rate herein used, if, differs slightly from the "effective rate"
commonly found in discussions of inflation. The effective rate is defined as the increase
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in a full year, which is (e'f -1). For an // = 0.10, the effective rate is 0.1052, which should
be kept in mind in the numerical example given below. The uncertainty of specific
numbers involved in future planning makes the difference inconsequential.

The income function is often composed of a fixed part (such as a fixed salary,
pension or annuity) and a part which is partially or wholly indexed to inflation (as with
an increasing salary or an indexed Social Security benefit). Thus the income function
may be expressed as

where F is the fixed after-tax income, A0 is the initial after-tax variable income, and
ia is the assumed after-tax rate of increase of the variable income.

Inserting (3) and (4) in (2) and integrating gives the useful solution

Inspection shows that if the inflation rate if exceeds both the after-tax return on
investment and the after-tax increase in variable income, capital will always be used
up, i.e., Sn will go to zero. This is the financial endpoint with which the planner is
concerned. Equation (5) is readily evaluated on a scientific calculator; if the calculator
is programmable, the equation can be set up with a program loop to give Sn vs. n by a
single key stroke for each point. Sample calculations show the insidious nature of
inflation which, in its effect on finances, is analogous to terminal cancer.

Sensitivity to the inflation rate. Both the rate of return on investment and the rate
of increase in variable income tend to track the inflation rate. Thus, capital accumula-
tion as well as expense are sensitive to the inflation rate, varying exponentially
therewith. However, and for the same reason, i.e., the tracking of the rates, inspection
of the bracketed term of (5) suggests that the point in time at which capital goes to zero
is relatively insensitive to the inflation rate. This feature is important because it is
exactly this period of time with which advance planning is concerned.

As an illustration of the insensitivity, assume that all the rates are equal, /„ = ia =
if = i. Inserting equal rates in (5), gives

Before retirement, earnings will usually exceed expense, A0>E0, so that capital
steadily accumulates. After retirement, A0 may consist of Social Security (indexed to
inflation) possibly plus some part-time earnings, but A0 < E0. It is then that capital goes
to zero as n increases. As (6) shows, the Sn = 0 point has only one term involving the
rate factor, the multiplier of the fixed income. Unless F is exceptionally high, survival
endpoints are little affected by the rate factor.

A numerical example of planning. Assume a salaried professional family of 1980,
15 years before expected retirement in 1995, who wish to plan for financial survival at
least as long as their probable lifetimes. The earlier paper [1] includes a table of life
survival probabilities which apply to most technical professions. Retirement between
ages 65 and 70, with a 30% survival probability, suggests that a financial plan should
encompass about 20 years more.

Equation (5) will be used twice, first for the 15 years between 1980 and 1995, and
then for the 20 years of retirement thereafter. The two equations must then be made
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consistent with each other. We will assume an inflation rate of ^ = 0.10, an after-tax
return on investment 4 = 0.07 and that after-tax salary increases are fully indexed to
inflation, ia = 0.10. After retirement, Social Security benefits will also be assumed to
be fully indexed, so that /„ = 0.10 applies to this income also.

Inserting the above rates in (5) with n = 15, and assuming no fixed income (F - 0),
gives the 1995 accumulation of capital as

After retirement, the survival condition is found by using n = 20 and equating (5) ic
zero. This gives

where the primed symbols are the 1995 initial conditions. The two equations aie
combined by recognizing that Si5 = S'0.

To further simplify, let the 1995 fixed income, F', be an after-tax pension equal
to half of the 1995 after-tax salary. Then, from (4),

Social Security income in 1980 is tax free, fully indexed, and covers perhaps 3 of the
living expense of a retired middle-class professional. Assuming the same conditions foi
1995 gives A'0 (Social Security) = E'0/3. Combining (7) and (8) with these conditions
gives the final survival condition

If the planner wishes to continue the 1980 life style into retirement, then (3) shows that

and (9) becomes

A hypothetical professional family with a 1980 salary of $45,000 would, after taxes;
retain about A0 = $30,000. If the capital, 50, is $100,000, the family may adopt a life
style equivalent to EQ = $19,500 in 1980 dollars. Above this, their capital accumulation
will be insufficient to permit continuation of the life style into retirement. An alternative
is to plan to reduce retirement life style to 80% of that during earning years. Equation
(9) shows that they may then increase 1980 living expense to E0 = $22,000. Without
planning, most professionals will be tempted to live more expensively than the life style
suggested by the model. If used annually as assumptions change, the mode! greatly
reduces the likelihood of financial failure after retirement.

POSTSCRIPT

Readers familiar with financial terminology will note that equations 2, 5, and 6 give the "future value" and, in each
equation, the large-bracket expression is the "present value" of the future changes in capital. In the paragraph on income
tax, the specific tax rates given are out-of-date, but the general caution on tax effects remains valid.
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THE OPTIMAL SIZE OF A SUBSTITUTE
TEACHER POOL*

MICHAEL A. GOLBERGt AND JOHN MOORE*

1. Introduction. In most large school districts, substitute teachers are pro-
vided when regular teachers are absent. This requires that the district have access
to a large pool of available part-time teachers. In many systems, these teachers are
on a purely stand-by basis; that is, they get paid only when they are called. Under
this procedure, the optimal policy is to hire as many teachers as meet minimum
certification standards. However, this frequently leads to a very small number of
paychecks per teacher, thus forcing them to leave the pool. As a consequence,
morale tends to be low and turnover high, leaving many poorly trained and
unmotivated people as teachers [1].

To overcome this, Bruno [1] proposed the adoption of an alternate system of
utilizing substitute teachers. He indicated, through a Monte Carlo simulation of
the needs of the Los Angeles City School District, that considerable savings could
be achieved if one were to use a fixed-size pool of teachers who would be paid
whether or not they actually taught. The problem then posed was to determine the
optimal size of the pool. He was able to solve the problem through Monte Carlo
methods.

It is the purpose of this paper to give a simple mathematical model for the
theory Bruno presents. We are, therefore, able to obtain analytically the results
Bruno gets via computer simulation. Consequently a district can utilize our results
with zero cost of implementation (and no computers). Our method closely
resembles simple inventory methods which are common in operations research [2]
and requires only a knowledge of elementary calculus and probability, and as such
should serve as an interesting classroom model in courses on either of these
subjects.

2. The model. It was observed in [1] that the daily demand for teachers is
stochastic and follows a different distribution for each day of the week. As a first
approximation, it was assumed that there was no carry over of demand from one
day to the next. As a consequence, the total cost of hiring substitutes will be
minimized if the daily cost is minimized. This will generally lead to a different pool
size for each day.

Suppose that on day "i" the demand for teachers is a random variable X with
density <p(x). That is, P{X^x} = J* <p(x) dx. Let S be the size of the pool. Let the
cost of a teacher be r, dollars per day. If a substitute teacher is not available, we
assume that the demand can be made up by using regular teachers and paying
them overtime. This, according to Bruno, is the practice of the Los Angeles City
School System and other large urban school districts [1, p. 417]. This is done at a
rate of r2 dollars per day and r2>ri.

Let C(x/S) be the cost when the demand is x. C(x/S) then satisfies

* Received by the editors March 30, 1975.
t University of Nevada, Las Vegas, Las Vegas, Nevada 89154.
t Environmental Protection Agency, Las Vegas, Nevada 89154.



MATHEMATICAL ECONOMICS 211

The expected cost C(5) = E(C(x/S)) is then

The optimal pool size is the one that minimizes C(S). Differentiating (2) gives S as
the solution to

If we let F(S) = P{X^S} be the cumulative distribution function of X, then the
integral in (3) is 1 — F(S), so that S satisfies the optimality condition

To implement (4) a school administrator would only need to know the
distribution of demand, a quantity which should be readily available. No compli-
cated simulation need be done as in [1],

3. Comparison with Bruno's results. To see how our model compares with
Bruno's, we will evaluate (4) using the statistics in his paper. The only detailed
figures in [1] are for Monday, so we use those. Table 4 in [1], which we reproduce
below as our Table A, gives the substitute demand distribution for Monday.

TABLE A

No. of Teachers % Cumulative %

200-275 .027 .027
276-350 .027 .054
351-425 .027 .081
426-500 .027 .108
501-575 .162 I .270
576-650 .108 .378
651-725 .486 .864
726-800 .081 .945
801-875 .027 .972
876-950 .027 1.000

r, is taken as pO and r2 as $54. According to (4), S satisfies F(S) = 24/54 =
.444. That is, S is the 44th percentage point of the distribution. Note that this
means that on approximately 44% of the school days, no regular teachers would
have substitute duties.

Since we do not have an analytic form for the distribution in Table A, we
interpolate in essentially the same way as Bruno does. For simulation purposes, he
assumes that the distribution is uniform in each of the intervals. Noticing that the
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38th percentile occurs at 650, S lies between 651 and 725. Using the above
assumptions, S = 650 + x, where x is determined from the equation
.444 = .378 + .486x/75. This gives x = 10.2, so that S = 660, which agrees with the
figure obtained by simulation.

Although (4) gives the pool size of minimum cost, it is not the only parameter
of interest in the problem. Since the model assumes that excess demand can be
made up by using regular teachers, it is of interest to determine what fraction of
the load must be borne by them. A quantity called the "level of service" is
introduced in Bruno's paper to measure this. His definition is

so that l-L(S) is essentially the fraction of the substitute load that must be supplied
by regular teachers. No analytic formulas are given in [1], and again L(S) is
obtained via Monte Carlo. Using the quantities defined in § 2, we give L(S) as

where ̂  <p(x)x dx is the expected demand. This can be simplified to

From this we see that L(S) §0, L(0) = 0 and lims^coL(S) = 1 and also that L(S) is
increasing and thus has the shape given by Fig. 2 in [1].

To illustrate the use of (6), suppose that S is the optimal pool size, so that
£ <p(x) dx = r,/r2. Then

Evaluating the integrals using Table A, we get that L(S) = .95, which again agrees
with the results in [1]. A fuller discussion of the use of L(S) in actual problems is
given by Bruno and the reader is referred to his paper for these ideas.

4. Conclusion. We have shown how a simple mathematical model can be
effective in studying the utilization of substitute teachers. The model is cheaper
and easier to use than the Monte Carlo methods in [1]. That such models have
practical value is shown by the results of Bruno. He indicates that in 1970 these
ideas could have produced $600,000 yearly savings for the Los Angeles City
School District.
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total number of substitute man-hours demanded'
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A SIMPLE PROOF OF THE RAMSEY SAVINGS EQUATION*

MOHAMED EL-HODIRIt

In [2] Ramsey considers the problem of minimizing the accumulated differ-
ence between bliss B and net utility U(x) - V(a), where U(x (?)) is the instantane-
ous utility of consuming x ( t ) and where V(a) is the instantaneous disutility of
working at the rate a(t).1 Capital c(t) and labor a(t) are used to produce the
output flow according to the production function f(c(t), a(t)). Output in turn is
divided between capital accumulation, c(t) and consumption x(t). Thus the
problem is to minimize the integral2 \l(B- U(x)+ V(a))dt subject to c+x =
f(c, a). In other words, we are to minimize the integral:

Setting a = y, the problem becomes:

where Z = (Zi,Z2)=(c,y).
Since L does not depend explicitly on t, the Euler equations have the form

(see Akhiezer [1]):

Writing these in terms of our problem we have:

Clearly,

* Received by the editors, April 15, 1976.
f Department of Economics, University of Kansas, Lawrence, Kansas 66045.
' The purpose of this note is purely pedantic since it reveals no new "truths." It merely makes it

easier to understand what is already a widely held belief.
2 Ramsey considers the case where T= oo. By taking the limit, and arguing around a bit, we can

show that the Euler equations in our simple problem will still hold. That, however, will make the proof
far from simple. It should also be noted that we don't discuss the existence problem, thus embracing the
risk of an empty intersection between the set of arcs for which a solution exists and the set of arcs for
which Euler's equations are necessary conditions for an extremum.
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Hence, (3.3) becomes

Consequently,

Equation (4) is Ramsey's savings equation and has the usual interpretation
that the "optional" policy is to save more if the net satisfaction is below bliss level
and to dissave if that level is surpassed. Equations (3.1) and (3.4) express the usual
market conditions for capital and labor.
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ADJUSTMENT TIME IN THE NEOCLASSICAL GROWTH MODEL:
AN OPTIMAL CONTROL SOLUTION*

STEPHEN D. LEWISt

Abstract. The long adjustment times implied by the neoclassical growth model are reviewed. The model is
transformed into state-space notation, and the results of the minimum-time problem from optimal control theory
are used as a basis for decreasing these adjustment times. This note illustrates the dynamic behaviour of a
popular economic model and provides an example of applying optimal control theory to theoretical economics.

1. Introduction. Models of economic growth attempt to explain how economies
grow over time. It is common to represent the complexities of actual behaviour by a
number of basic assumptions that reduce the problem to manageable proportions while
still maintaining the essential characteristics of economic growth. We begin by consider-
ing a hypothetical economy that produces one good which represents output as a whole.
This good is produced by capital and labour, the only two factors of production, both of
which are homogeneous. Output is malleable and either is consumed or else becomes a
part of the capital stock. While very restrictive, these assumptions, nonetheless, provide
the basis for examining many questions concerning economic growth. More specifically
these basic assumptions when combined with further details presented below specify a
model that describes the conditions under which a growing economy may be in steady-
state equilibrium. When the key variables of the model are expressed in per capita terms,
it is easy to examine the type of dynamic behaviour expected when steady-state conditions
are not satisfied. This dynamic behaviour and the modifications that can be produced
through the application of optimal control theory are the major focus of this paper. A very
readable treatment of economic growth theory and the motivation for the assumptions
summarized above is available in Jones [3].

The next section sets forth the basic assumptions of the growth model to be analyzed.

*Received by the editors December 14, 1981, and in revised form July 10, 1982.
tDepartment of Economics, University of Alberta, Edmonton, Alberta, Canada T6G 2H4.
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In §3, steady-state and dynamic properties of the model are summarized. The adjust-
ment-time problem is discussed next. The last section considers the use of optimal control
theory to shorten excessive adjustment times.

2. Model specification. One of the major and most popular explanations of a
growing economy that builds on these basic assumptions is the neoclassical growth model
based upon the work of Solow [8]. In his model, the labour force, N, grows at a constant
proportional rate, n. Full employment prevails at all times. N and the capital stock, K,
combine to produce output, Y. The production process is summarized by an aggregate
production function, F(K, N) which is continuous and linear homogeneous. As discussed
previously, Y is identically equal to expenditure for consumption plus investment, I. By
definition / represents changes to K and, using a '' over a variable to represent
differentiation with respect to time, then / = K. Following the Keynesian tradition,
saving behaviour, S, is specified as a constant proportion, s, of Y where s is the marginal
propensity to save and is constrained by 0 < s < 1. A final condition imposed on the model
is the equilibrium condition that / is always equal to S. All of these assumptions are
summarized by equations (l)-(5):

It is common in models of economic growth to represent key variables in ratio form.
The per capita variables output-labour ratio, y = Y/N, and capital-labour ratio, k =
K/N, are useful in the discussion that follows. With these new variables the aggregate
production function can be represented by

or more simply by

To ensure the existence, uniqueness and stability of a steady-state equilibrium, it is
further assumed that/(&) is "well-behaved."1

In terms of growth rates and per capita variables, equations (l)-(6) can now be
condensed into

'The additional assumptions, all of which have plausible economic interpretations, are f'(k) > 0,
/"(*) < 0, /'(O) - «, /'(«) _ 0, /(O) - 0 and /(<*) _ «,.
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3. Steady-state and dynamic properties. The basic dynamic equation of the neoclas-
sical growth model based upon Solow [8] is derived by combining (7)-(9) to obtain

with

The expression k" is the per capita form of a Cobb-Douglas production function which is
commonly used in models of economic growth in place of f ( k ) when explicit solutions to
dynamic behaviour are required. It is easily verified that this function is "well-behaved."
The parameter a represents the elasticity of output with respect to capital (i.e., a ~
dy/dk • k/y). Thus the first expression in (10) represents how much is saved and invested
out of per capita output. The second expression determines the amount of investment
required to keep the capital-labour ratio constant.

In a steady-state equilibrium (i.e., k = 0), the economy grows at rate n and the
equilibrium capital-labour ratio, kf, is given by

One of the implicit influences on s is the tax rate as determined by fiscal policy. The
equilibrium change in ke for a change in s is obtained from

The "well-behaved" properties of the function A" ensure that at an equilibrium point
dke/ds > 0. These properties also guarantee that in the neighborhood of ke dynamic
behaviour is stable (i.e., dk/dk = s f ' ( k ) - n < 0).

4. The adjustment problem. In the previous section, the steady-state equilibrium
was described, and it was determined that dynamic behaviour was stable. The interesting
question to be considered now is how the model behaves when the steady-state condition
summarized in (11) is not satisfied. By solving the differential equation (10) the
adjustment problem can be characterized in terms of the time required to move from an
arbitrary initial position to the steady-state implied by a given set of parameter values.

We start by considering the movement from an initial equilibrium k0 based upon s0 to
a new equilibrium ke determined by sf. From (11) ,

where s0 % s, => k0 ^ ke. Dynamic behaviour is examined by first defining a new variable
z = k1'". Substitution into (10) yields
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Solving (13) and transforming back to k's yields

From (14), it is evident for j = sf and starting from k0 =f kf that k ( t ) only approaches kf

asymptotically. To find the time tx required to adjust k ( t ) a fraction X of the distance
between ka and kf, let

where
Then from (14)

TABLE 1
Adjustment times for k(t)*

Percent adjustment

30% 50% 70% 90%

r(years): 12.9 25.0 43.4 82.7

'Parameter values: ka = 5.0, k, = 5.5, a - 0.3, n -
0.04, i0-0.15, i, = 0.1603.

Table 1 gives sample values for X and /A and illustrates for parameter values typical of
actual economics that adjustment times in the neoclassical growth model are exceedingly
slow. This adjustment problem has been amply noted by others ([2], [6], [7]). The usual
attack on excessive adjustment times is to introduce modifications to the basic model.
Often adjustment times have been reduced by a factor of two or three, but they still
remain uncomfortably long. In the next section the structure of the model is retained but
optimal control theory is used as a method of altering adjustment times.

5. An optimal control solution. Long adjustment times can be shortened and k ( t )
can be made equal to ke in a finite period of time by considering results from the
minimum-t ime problem [1] of optimal control theory. These results are most easily
obtained by first converting the model into standard state-space notation. For z as defined
above, let

with |« ( / ) '.s l,c > 0. The saving rate has been split up into an equilibrium component, .sv,
and a policy component, c u ( t ) . This latter component represents the extent to which fiscal
policy can influence the saving rate. Empirical evidence suggests that 0 < s(t) < 1 so that
values o f f should not violate these restrictions.

The optimal control problem is to minimize the performance index
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subject to

To solve this problem, consider the Hamiltonian

where p ( t ) is a costate variable. Pontryagin's minimum principle is expressed as

Since by assumption (1 - a) c> 0, the control which minimizes (16) is given by

where sgn denotes the signum function. It is necessary for p ( t ) to satisfy the differential
equation

Equation (17) implies that /?(0) ^ 0 and sgn \p(t)} = sgn \p(Q)}. Consequently no
switching of controls can occur and therefore the policy that minimizes H is given by
u ( t ) = +1 oru(t) = -1 for all J > 0. It is further clear from (17) thatp(r) ^ 0 for finite/.
Therefore there is no time interval for which Pontryagin's minimum principle fails to
determine the minimum-time relationship between x ( t ) and u ( t ) . Since the minimum-
time problem is based upon dynamics of a first-order linear equation and since dx/dx < 0,
it is well known that an optimal control solution exists. The control law which moves any
x ( t ) / 0 to zero in minimum time is given by

The optimal control, «*, is seen to be of the "bang-bang" type and with linear first-order
dynamics, x ( t ) does not change sign and no switching in the control will occur [1].

The solution to the minimum-time problem is also easily presented in a diagram
using (10). Consider an initial situation in which k0 < ke (i.e., x(0) < 0). From (18),
maximum capital formation at each moment of time and the quickest movement from k
to £ fare obtained when «* = + 1. By setting 5(0 = se + c, the different adjustment paths
are illustrated by a comparison of the two phase lines

in Fig. 1. Asymptotic adjustment according to (19) is represented by segment AD whereas
the minimum-time adjustment path is calculated from (20) and is illustrated by BC.
Fiscal policy as determined by i = s ( t ) causes greater capital formation than is the case
when s = se with the result that ke can be reached in a finite period of time.

Finally for given initial conditions and parameter values, the solution of this problem
determines the minimum time t* to bring about complete adjustment of k(t) to ke. In
terms of k's this expression is obtained by substituting s ( t ) for s and ke for fcx into (15)
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FIG. I , Phase diagram.

with the result

This substitution allows the explicit determination of the time required for complete
adjustment. /* is also seen to be a function of c which reflects the impact that fiscal policy
can have on s(t). For the parameter values used previously, this relationship is summa-
rized in Table 2. The conclusion is that the more powerful is fiscal policy the quicker the
movement from k0 to k f . This of course is what the minimum-time problem is designed to
determine.

TABLE 2
Minimum time for complete adjustment*

Fiscal policy parameter c

0.01 0.05 0.1 0.15

r*(years): 25.4 6.7 3.5 2.4

'Initial values as in Table 1.

While optimal control theory has been applied to the most basic version of the
neoclassical growth model, the techniques employed in this paper can be applied to other
versions when dynamic behaviour can be described by a single first-order differential
equation. If more than a first-order dynamic system results, then the adjustment problem
becomes more complicated and a solution to the minimum-time problem may not exist. In
Lewis [4] [5], some second-order systems are considered. Depending on the particular
model examined analytical solutions for /* may not be possible, but computer simulation
can always be used.

Acknowledgments. Computing support from the University of Alberta is appre-
ciated. Referee comments were also very helpful.
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THE CONCEPT OF ELASTICITY IN ECONOMICS*

YVES NIEVERGELTt

Abstract. The following pages introduce the notion of elasticity and present its main mathematical and
graphical properties, illustrating them on real economic cases, such as the consumption of marijuana and the
demand for hospital beds.

1. Introduction. Economists often use the notion of elasticity of a function, which
they define to be (see [4, pp. 116-117])

where F is usually a positive function defined on all or part of the positive real axis IR*. In
this situation, IJF(X) exists if and only if the derivative F'(x) does, and then

Thus, rip(x) measures the ratio of the relative change in F(x) to the corresponding relative
change in x, whereas F'(x) measures the ratio of their absolute changes.

This article explains how the concept of elasticity relates to real life, shows how to
visualize ?j on logarithmic graph paper, and presents a few calculus rules governing
elasticities. This may provide useful suggestions to those whose interests lie in fields other
than economics, but who teach calculus to business students. First, we illustrate the above
definition by the two kinds of functions most frequently encountered in the classroom and
in practice.

Example 1.1. Power functions of the type F: R* —> R*, x i—• A • xa have a constant
elasticity, equal to a (and conversely, by (9) below):

Example 1.2. Consider an affine function D : ]0, b/m[ —•• K*,p i—»• — m • p + b with
positive coefficients m and b. Then (see Fig. 1):

'Received by the editors March 26, 1982, and in revised form June 17,1982. The work of this author was
partially supported by a grant from the Swiss National Research Fund.

tDepartment of Mathematics, University of Washington, Seattle, Washington 98195.
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(4a)

Since - mp = D(p) — b, one can also write:

2. Application. Suppose that p represents the unit price of some commodity, say in
dollars per item, and q ••= D(p) the quantity sold at price/? in one time period, say in items
per week. (Economists call D a demand curve.) Denote P the inverse function of D, so that
p = P(q)', then rjD determines the maximum of the total revenue function TR as follows:

FIG. 1 , The domain of D lies 01. the vertical axis, whereas TR and MR have theirs on the horizontal
axis.

since TR(<y) = p • q = P(q) • q (price times quantity), differentiating with respect to q
yields:

Consequently, the marginal revenue MR(<?) = TR'(<?) is positive where rjD(p) < -1 and
negative where r]n(p) > - 1 (with p = P ( q ) ) . For instance, if D is an affine function as in
Example 1.2, then total revenues reach their maximum at the midpoint (t?o, A>)> where
%(A)) = - 1 by (4a), and therefore TR'(^0) = 0 (S£e Fig. 1). Students will enjoy working
out the following two real cases:

Example 2.1. Belinfante and Davis [ 1 ] found that the demand for record albums was
q = D(p) - -88.3 • p + 1821, so that p - -0.01133 • q + 20.62. Hence, total reve-
nues will be largest with a price tag pa = 20.62/2, i.e. $10.31 per album, and then
</„ = 1821/2 = 910 records will be sold.
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Example 2.2. Hogarty and Elzinga [3] estimated the price elasticity of demand for
beer to be a constant rjD = -1, with q = D(p) = 123/p (where p is in cents per can and q
in cans per adult per day). In this case, total revenues do not depend on price:
TR(<?) = TRoD(/?) = p • D(p) = 1230 (per adult per day) regardless of price and
quantity.

3. Visualizing ij. Plotting a function F against logarithmic scales produces a curve
whose slope equals the elasticity i)F of F: performing the changes of coordinates

and forming the composite (which amounts to changing scales)

one obtains/' = (•*[/' ° (F° 0)) • (F' o <£) • <£'. Hence,

so that the slope of/at u is indeed the elasticity of F at x = e". An alternative argument
runs as follows:

which equals the slope of/at u = In (x). Observe that both arguments hold with any base
for the logarithm, e.g. 10 or e. Of course, the slope of/must be measured against linear
scales to yield ?JF. This gives an easy way to locate the values of x where r)F(x) = -1: find
where/has slope -1.

The next example will catch students' attention.
Example 3.1. Nisbet and Vakil [6] proposed two demand curves for marijuana

among UCLA students (quantities in "lids" per month, prices in dollars per "lid"; one
"lid" equals one dried ounce):

£>, has constant elasticity -1.013 and therefore would simply appear as a straight line
with slope -1.013 on logarithmic scales. At the going price of $10 per ounce, D2 has
elasticity -1.51, the slope of the tangent to \j/ ° D2 ° 0 at (q*,p*) •= (1.49,10). Sliding a
straight edge with slope -1 until it is tangent to the curve shows that Z)2 has elasticity -1
at (<7o>/>o) := (1-87, 8.30), where revenues would be maximal (see Fig. 2).

4. Calculus with elasticities. The elasticities yF and % of two given positive functions
F, G : IR* —* IR * follow rules similar to those of elementary calculus:

(a) J?FC = >?f + nc,
(b) np/c = I?F - no,
(C) Thf-nF,

(d) r\F. = a- rif,
(e) 7?f,,c = ( r i F ° G ) • f\G (chain rule),
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FIG. 2. £>2(/>) = -0.225 • p + 3.74, on logarithmic scales. (q*,p*) - (1.49, 10) shows the prevailing
market situation, while (qa, p0) - (1.87, 8.30) indicates the optimal point, where the tangent line to D2 (drawn
in) has slope - 1.

where a and A are constants. Let us prove (a) and (e) as examples:

The proof of (b) is similar to that of (a), while (c) and (d) constitute particular cases of
(e)-

A function F can also be recovered from its elasticity as follows: since r\F =
(x/F) • dF/dx then dF/F = (i)F/x) • dx, and an integration yields

for some constant K. Here is an application of this formula.
Example 4.1. Cullis, Forster and Frost [2] studied the demand for inpatient

treatment, whose elasticity can be written T]D(S) = -2.19 • S, where S1 denotes the
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number of available hospital beds, and D that of deaths and discharges per year. Equation
(9) then yields

(K was estimated to be about 5.17.)

5. Analogy with an elastic rubber band. Perhaps the reader wonders whether there is
a connection between economic elasticity and physical elasticity. It turns out that there is
a formal similarity between the price elasticity of demand, written T?D = (d Log (D))/
(d Log (/?)), and the tensor a that describes the stress undergone by an isotropic and
homogeneous elastic rubber band of volume Fsubject to a deformation gradient tensor X:

where Z represents the partition function and * = -kT • Log (Z) the Helmholtz free
energy. (See [5, p. 62] and [7, p. 64].) Of course, the present paper does not tell how to
stretch a dollar bill.
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10. Optimization (Including linear, nonlinear, dynamic, and geometric
programming, control theory, games and other miscellaneous
topics)

COMPLEMENTARY SLACKNESS AND DYNAMIC PROGRAMMING*

MORTON KLEINt

Abstract. It is shown that a policy improvement algorithm for a discrete discounted cost dynamic
programming problem can be obtained from the complementary slackness theorem of linear programming.

Introduction. Consider a finite state discounted cost deterministic (for simplicity)
infinite horizon dynamic programming problem. It is well known that the policy
improvement procedure for solving such a problem coincides with the simplex method
solution to an equivalent linear program, except that with policy improvement more than
one variable change can occur at each iteration [1], [2]. What is perhaps not as well
known is that a slight variation of the policy improvement algorithm can be obtained from
the complementary slackness theorem of linear programming. This observation, although
extremely simple, does not seem to have appeared in the literature. It provides, in a linear
programming course, another use of complementary slackness.

Discrete dynamic programming. The dynamic programming problem of interest
here is that of solving the functional equation

where f ; is the total discounted cost over an unbounded discrete time horizon associated
with an optimal policy when a system starts in state /, a (0 £ a < 1) is a given one period
discount factor, ctj is the cost associated with the decision to make a one period transition
from state / toy, and K(i) is the set of states reachable in one step from state /. An optimal
policy for this problem is known [1] to consist of a set of (deterministic) transitions, one
for each state, which is independent of time.

Linear programming. As shown in [2, pp. 448-449] an optimal solution to the
dynamic programming problem can also be found by solving the linear program

I: Maximize ZXo vf, subject to the constraints:

The idea behind the transformation is that (1) implies that the zA must satisfy (2) and in
order for (2) to satisfy (1), for each state /, (2) must hold with equality for at least one (//').
Any positive numbers can be used as the coefficients of the v, in the objective function
[2, p. 449]; we have used ones for computational convenience.

Given problem I, an optimal policy can be also obtained by solving its dual problem
II: Find nonnegative jc^'s which minimize £,- £/ xtj ctj subject to the constraints

In [1] it is shown that if the simplex method is used to solve problem II, each basic
feasible solution will have exactly one positive variable, say x/j, for each state and hence is
never degenerate. Each positive variable can be interpreted as an instruction to make a

*Received by the editors September 20, 1981, and in revised form June 10, 1982.
tDepartment of Industrial Engineering and Operations Research, Columbia University, New York, New

York 10027.
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transition to state j whenever the system is in state /. Thus, a basic feasible solution
corresponds to a feasible policy for the dynamic programming problem; although we don't
use the simplex method, we will take advantage of this one-to-one correspondence.

The dual variables also carry another interpretation. This interpretation depends on
the coefficients attached to the v's in the primal objective function (and consequently on
the values of the right side constants in the dual's constraints). In our formulation using
ones as the coefficients of the i*'s, the x^'s represent the discounted number of times
transition ((/') will occur if the process is started in each stage once. In a stochastic setting,
the positive coefficients associated with each v would represent the probabilities of
starting the process in that state. In such a case, each xtj could be thought of as the
expected discounted number of times each transition from state i to state j is made.

As indicated earlier, our approach uses the complementary slackness theorem, which
states that feasible solutions to I and II are optimal if and only if

A policy improvement method can now be constructed:
Step 0. Choose any feasible policy for the dynamic programming problem. That is,

select a set of n + 1 je/,-'s, one for each state /, each of which will be positive. (Note: Actual
values of the x,/s are not needed. We only have to decide which ones will be positive
because of the 1-1 correspondence between feasible policies and the basic feasible
solutions of problem II.)

Step 1. Construct a solution to primal problem I, using (4), by setting ctj - v, +
a vj = 0 for each instance in which xtj is positive. This involves solving a system of n + 1
equations in the same number of variables for which a unique solution can always be
found [1].

Step 2. Calculate the quantities

Two cases can occur:
A. Cjj — Vj + a Vj ^ 0 for all xfj = 0. If this happens the primal solution is feasible and

the policy being evaluated is optimal since the jCy's are feasible and complementary
slackness holds.

B. One or more of the quantities cit - t>,• + a vf < 0. If this happens, the primal
solution is not feasible and the current policy can be improved.

Suppose that

and the current policy calls for transition ((/), that is, x:j > 0. Then because of (6), an
improved policy calls for transition (ik). Such improvements can be made for each
instance in which (6) occurs. It may be noted that several of the calculated quantities can
be negative for the same state /, that is, for a given state /, we can have c{] - v,• + a vt < 0,
for j = A: ( l ) , j = k{2\ etc. If this occurs any one of the associated policy changes can be
made.

To see that such a policy change leads to a strict improvement, consider the dual
objective function. Using (3), since the dual solution is feasible, we write it's value in the
form



228 KLEIN

After some rearrangement, this reduces to

Hence, since the v/s are constants for a given policy, if e.g. cik — vf + a vk is negative, the
value of the dual can be reduced by changing the associated zero-valued dual variable xik

to a positive value and changing the value of the current positive-valued variable, say jc,.,
to zero.

A numerical example. Find: v0, vt, and v2 to satisfy v, = min,- {c,-, + .$Vj], with
transition costs

(Here M is a very large number and the discount factor a = .8.)
The equivalent (primal) linear program is to find v0, vt, v2 which are not sign-

constrained and which

maximize

subject to

Its dual is to find nonnegative

minimize

subject to

Calculations. Step 0. Let (/, j) represent a decision to make a transition from state /
to state/ Then {(0, 0), (1, 0), (2, 1)} represents an initial policy. This policy implies that
the dual variables xm, xto and x2 will be positive and all others will be equal to zero.
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Step 1. For the positive x,y's, set

Solving yields f0 = 25, f, = 20, v2 = 17 with associated value = 62.
Step 2. For each dual xtj = 0, evaluate c0 - v,- + <w;:

Since the values associated with xm and x02 are negative the policy being evaluated is not
optimal; either of the associated policy changes would lead to an improvement. In this
case, since both changes involve transitions from state 0, they cannot be made at the same
time. A simple choice is the most negative valued transition (0, 1); thus an improved
policy is |(0, 1), (1,0), (2, 1)).

We now return to
Step 1. For the new policy, set

The solution is vg = 22.22. v, = 17.78, v2 = 15.22 with associated value = 55.22.
Step 1. For each dual xfi = 0, evaluate ctj - v, + av/.

Since all evaluations are nonnegative, the policy tested is optimal.
The values of the dual variables may also be found by solving the system of dual

constraints. Since we know that x00, xn, x22, x20 and x]2 are equal to zero, the system
reduces to

Its solution is x2t = 1, Jt10 = 7 2/g, and jc01 = 67/9.
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Remarks. 1. Step 1 is the same as the "value determination" step of the standard
policy improvement procedure described in [2].

2. Step 2 is slightly different from the policy improvement step described in [2].
However, if for a given state i there is more than one possible improvement and we choose
the new transition from i to be to that state7* satisfying min,-^ (i) [c^ — v,-4- a Vj}, then
the standard policy improvement method and the one described here call for the same
changes.

3. Our method is also very similar to the simplex technique for the transportation
problem (see [2, pp. 186-188]). A feasible policy in our problem corresponds to a set of
routes in the transportation problem associated with a basic feasible solution. Step 1 is
similar to the simplex transportation problem method of finding a set of dual variables
which satisfy complementary slackness conditions. Step 2 corresponds to evaluating the
"reduced cost" transportation cells to see if the introduction of a nonbasic variable will
give rise to an improved solution; at the same time a negative value of c{j — v, + a vt

implies that the v/'s are not feasible. An optimal solution for the transportation problem
(and an optimal policy for our problem) is indicated when a feasible dual (primal)
solution is obtained.

REFERENCES

[ 1 ] C. DERMAN, Finite State Markovian Decision Processes Academic Press, New York, 1970.
[2] H. WAGNER, Principles of Operations Research, 2nd ed. Prentice-Hall, Englewood Cliffs, NJ 1975.

The Game of Slash

Problem 76-1, by D. N. HERMAN (University of Waterloo).

The board used here consists of a single row of positions ( 1 , 2 , • • - , « ) ,
ordered from left to right, in which a given number of pieces are placed in some
fashion among the positions. Only one piece may ever occupy a given position.
Alternating play between two players is made by moving any one of the pieces as
far to the left as desired but still remaining to the right of the piece immediately on
its left. The winner is the player who leaves his opponent no possible move.

Another variation of the game allows the players to move as far to the left as
desired to an unoccupied position.

Determine a winning strategy for the game.

Solution by D. J. WILSON (University of Melbourne).

Considering each unoccupied position in turn, count the number of pieces
lying to its right. If this number is odd, place a match in the position as a marker; if
it is even, leave the position empty. Thus, between any pair of successive pieces
either every position will be occupied by a match or they will all be empty. Regard
every collection of matches lying between a pair of successive pieces as a single
pile, and consider the position which these piles form in the game of Mm [1]. The
player whose turn it is to move can make sure of winning if and only if this Nim
position is unsafe.

A winning move is to take matches away from one of the piles so as to leave a
safe position in Nim and then make the number of spaces between the corre-
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spending pair of pieces equal to the number of matches in the reduced pile. This
can always be done by moving the right-hand piece of the pair.

After the next move the number of matches in exactly one pile will have to be
changed. Whether this number is increased or decreased, it is easy to show the
position left by the move must again correspond to an unsafe position of Nim.
Since the final position of the game corresponds to a safe position of Nim it follows
that a player can be sure of winning if he always leaves his opponent with such a
position.

REFERENCE

[1] J. C. HOLLADAY, Cartesian products of termination games, Contributions to the Theory of
Games, vol. Ill, Annals of Mathematics Studies, no. 39, Princeton University Press,
Princeton, N.J., 1957, pp. 189-200.

W. C. Davidon indicated that a program for playing Nim or Slash with an
HP-65 pocket calculator is being submitted to the Hewlett-Packard User's
Library. It analyses Nim with up to five heaps or Slash positions with up to ten
pieces; the number of each Nim heap, or in alternate Slash intervals, can be from
zero through 99.

Partial solution of the second variation of Slash by the proposer.
A winning strategy for the second variation of Slash in the case of four pieces

can be given in terms of Nim. This includes the strategy for two (three) pieces
simply by placing two (one) pieces initially in positions 1, 2(1).

Suppose the pieces are in positions PI, ?2, PI, P*, P, ̂  P/, i ^}• Call this a
Slash position. Construct four Nim piles of sizes P\ ~ 1, P2 - 1, Pj - 1, Pi, - 1 and
call the Slash position safe if the corresponding Nim position is balanced. The
player faced with an unsafe position will win by moving to a safe position at each
turn. The proof is a consequence of the following three assertions.

(a) Any move from a safe position always results in an unsafe position.
(b) For any unsafe position, there is a move that makes it safe.
(c) The final Slash position is safe.
Assertion (a) follows directly from Nim. Each move in Slash corresponds to

reducing a Nim pile thereby making an unbalanced Nim position. If we start with
an unbalanced Nim position we can always balance the piles by reducing one pile.
But Nim allows two piles to be the same size and this is not allowed in Slash.
However the four piles corresponding to any unsafe position must be of different
sizes, and it is easily verified that the resulting balanced position cannot have two
equal piles. This proves (b). The Nim piles 0, 1, 2, 3 corresponding to the final
Slash position 1, 2, 3, 4 is balanced as asserted in (c).

The above strategy is not a winning strategy for more than four pieces since
(b) is not always true, forming two equal Nim piles may be required in moving
from an unsafe position to a safe position, even though the original Nim piles were
of different sizes.

Comment by R. Silber (North Carolina State University.)
This problem appears in J. Conway's new book, On Numbers and Games. It also was discussed by M. Gardner

in the September, 1976 issue of Scientific American, where it is called the "silver dollar game without the dollar."
The generalized game is deep and is also solved (see C. P. Welter, The theory of a class of games on a sequence
of squares in terms of the advancing operation on a special group, Proc. Roy. Acad. Amsterdam, Ser. A, 57
(1954), pp. 194-200). Welter's game is discussed briefly in T. H. O'Beirne, Puzzles and Paradoxes, Chap. 9,
as well as in the aforementioned book of Conway, where Welter's results are presented and simplified.
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Optimum Sorting Procedure

Problem 59-3, by PAUL BROCK.

A fundamental procedure in all business operations is that of filing informa-
tion. Whenever the information in the file is to be updated, the updating items
are first sorted in accordance with the key of the file. This is the standard alter-
native to a direct use of the file which is a random access procedure. In many
cases, particularly in multiple file problems, the sorting procedure must be done
by a computer. This is an expensive and time consuming operation. Many
different procedures have been suggested, and each takes a certain amount of
time. It would be useful to determine a minimum computer time procedure.

A general investigation of this problem is under way. In this investigation the
following general problem arises: Given a sequence of positive integers, what is
the expected length of its maximal monotonic nondecreasing subsequence.

The solution depends upon the length of the sequence and the number of allow-
able integers. The special case for two integers has been solved. The solution
depends upon the following lemma which is proposed as a problem: Among
sequences of fixed length M consisting the p 1's and q 2's, the number of se-
quences whose maximal monotonic nondecreasing subsequences are of length n
is the same for all p, q such that 0 < p, q < n g M.

Solution by the proposer.

Let F(p, q,n) be the totality of F sequences of length n for a given p, q choice
where an F sequence of length n is defined as a sequence containing a maximum
monotone nondecreasing subsequence of length n. The proof is by induction on
M. The smallest value of M for which

holds is M = 2. For this case the theorem is obvious. Now consider the theorem
for sequences of length M < M: choose a p, q satisfying p + q — M and (1),
and fix n g M.
Case 1: n = M: For any values of p, q > 0, there is only one F sequence, namely,

11 • • • 122 • • • 2.
Case 2: n < M: Assume q < n — 1. Since n < .¥, it is clear that p, q > 2 for

(1) to hold. Consider those sequences starting with a 2. Since q < n,
the 2 cannot be counted towards any F sequence. Thus, the total
number of F sequences starting with a 2 is F(p, q — 1, n). Now con-
sider those sequences starting with a 1. The 1 must be contained in
every F sequence. Hence, the totality with this condition satisfied is
F(p — I , q, n — 1). Consequently, F(p, q, n) = F ( p , q — 1, n) +
F(p - I,?, n - 1).

Since

the conditions on the right satisfy the inductive hypothesis. To remove the con-
dition q < n — 1, we consider the case of sequence ending in 1 or 2. This yields:
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F ( p , g, n) = F(p - 1, q, n) + F(p, g - 1, n - 1).

Here, the condition p < n — 1 must be imposed to satisfy the inductive hy-
pothesis. Finally if p = q = n — I , this would be the only combination of p 1's
and q 2's satisfying (1) and hence the theorem is true trivially.

J. Gilmore refers to the paper Sorting, trees and measures of order, by W. H.
Burge, Information and Control, vol. 1 (1958), pp. 181-197, which is concerned
with rinding the sorting method which takes the least time to keep a large quantity
of data in an orderly array for easy reference. Burge finds that the optimal
strategy for sorting a set of data depends upon the amount of order (in the in-
formation-theoretic sense) already existing in the data; and he shows how to
find an optimal sorting strategy given a measure of this order.

Another Sorting Problem

Problem 60-8, by J. H. VAN LINT (Technische Hogeschool, Te Eindhoven, Nederland).

Consider all sequences of length M consisting of pi 1's, pa 2's, • - • pk k's
(k S 2) whose maximal monotonic non-decreasing subsequences of contiguous
numbers are of length n where n satisfies the inequalities

Determine the number N(pi, p%, • • • , pk ', n) of sequences with this property.
Editorial note: This problem is similar to that of Brock's Optimum Sorting Pro-

cedure, Problem 59-3. However, in the latter problem, contiguity is not required.
Solution by the proposer. As a consequence of (1) the subsequence must contain

every number 1,2, • • • , k at least once and hence it starts with the number 1
and ends with the number k.

First consider n g M — 2.
If the monotonic subsequence of length n is at the beginning (at the end) of

the sequence there are M — n elements left, of which M — n — 1 can have
arbitrary values, because M — n < pt for all i, while the first (last) of these
elements can have all values except A; (except 1). If we choose these elements
the monotonic subsequence is fully determined. Hence there are 2-kM~n~1-
(k — 1) sequences of this type.

Now consider the case where the monotonic subsequence is preceded by ele-
ments and followed by M — n — I elements. Here I can have the values 1, 2
• • • , M — n — 1. The last of the preceding elements can have all values except
1. The first of the elements following the subsequence can have all values except
k. The other M — n — 2 preceding and following elements can have arbitrary
values. (We again use (1)). After choosing these elements the subsequence is
fully determined. We can still choose I.

So there are (M — n — l ) - ( k — i)2./^"""2 sequences of this type. Adding,
the two results we find:



234 JOHNSON AND KLAMKIN

We see that N is the same for all pt, p2 , • • • , Pk as long as (1) is satisfied
and of course pt + p2 + • • • + p* = M.

For k = 2 we find for (2): N = 2M~n'2(M - n + 3).
We still have 2 cases to discuss: n = M and n = M — 1. Both are trivial.

For n — M we have N = 1 and for n = M — 1 the above holds but we only
have the first term i.e., N = 2(fc — 1).

The Ballot Problem

Problem 59-1, by MARY JOHNSON (American Institute of Physics)
AND M. S. KLAMKIN (University of Alberta).

A society is preparing 1560 ballots for an election for three offices for which
there are 3, 4, and 5 candidates, respectively. In order to eliminate the effect of
the ordering of the candidates on the ballot, there is a rule that each candidate
must occur an equal number of times in each position as any other candidate for
the same office. What is the least number of different ballots necessary?

It is immediately obvious that 60 different ballots would suffice. However, the
following table gives a solution for 9 different ballots:

No. of Ballots 312 78 130 234 182 104 208 286 26

Office
1 A A A B B B C C C
2 D D E E F G F G E
3 H I K I K J J L L

Another solution (by C. Berndtson) is given by

No. Of Ballots 260 182 78 234 52 130 104 312 208

Office
1 A A A B B B B C C
2 D F E G G D G E F
3 H I J J H I K L K

The above tables just give the distribution for the first position on the ballot for
each office. The distributions for the other positions are obtained by cyclic
permutations.

We now show that 9 is the least possible number of ballots. Let us consider the
distribution for office 3 using only 8 different ballots. We must have the following
(for simplicity we consider a total of 60 ballots):

No. of Ballots x 12 - x y 12 - y z 12 - s 12 12

Office
3 H H I I J J K L

Now to get a total of 15 representations for each position for office 2, we must
have x = y = 3, 2 = 6. But this does not satisfy the requirements for office 1.
Similarly no number of ballots fewer than 8 will suffice.
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It would be of interest to solve this problem in general. The problem is to
determine a distribution of the candidates such that the system of linear equa-
tions for the number of each type of ballot, which contains more equations than
unknowns, is solvable in positive integers.

A trick solution to the problem can be obtained using 5 different ballots: add
two fictitious names to the group of 3 and one to the group of 4. We then have 3
offices for which there are 5 "candidates" for each. This would also provide a
survey on the effect of ordering of the candidates on the ballot.

POSTSCRIPT

For a solution when there are only two offices, see "The Ballot Problem," Math. Modelling (1984) pp. 1-6 and
a subsequent simplification to appear (in the same journal).

An Extremal Problem

Problem 67-17, by J. NEURINGER (AVCO Corporation) AND D. J. NEWMAN (Temple University).

Consider the differential equation

Choose F(x) subject to the conditions

so as to maximize >•(!).
This problem has arisen in connection with the construction of an optimal

refracting medium.

Solution by J. ERNEST WILKINS, JR. (Gulf General Atomic Incorporated).

Let yn be the class of intcgrable, almost everywhere nonnegative, functions
F(x) defined on the interval (0, 1) whose integral over (0, 1) is M. For each such
F(x) there exists a unique "associated" function y(x) with an absolutely continuous
first derivative y'(x) which satisfies the differential equation y" = Fy almost
everywhere on (0, 1) and for which y(0) = 1, y'(0) = 0. Let A be the least upper
bound of the values y(l) as F(x) ranges over SJJJ. I shall prove that A = M + 1 if
0 g M g 1, A = 2 exp (M112 - 1) if M § 1.

The proof of this assertion will depend on the following lemma, which is
suggested by the usual calculus of variations devices.

LEMMA 1. If a constant v and two absolutely continuous functions u(x) and
A(x) can be found such that (i) /. g 0, (ii) /.(«' + u2} g 0, (iii) A' = 2u(A + u) — 1,
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Suppose that F(x) is an element of 9JJ and that y(x) is associated with F(.x).
It is easy to show that y(x) ^ 1 and hence the function V(x) = y'(x)/y(x) is
absolutely continuous. Moreover, F(0) = 0 and F = V + V2. Therefore, by
virtue of the hypotheses (i) through (iv) and the definition of 9K,

The conclusion of the lemma now follows from the inference from (iii) and (iv)
that

WhenO

are easily seen to satisfy the hypotheses of the lemma, and hence

When M

also satisfy the hypotheses of the lemma, and hence
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To see that the upper bounds just established are in fact least upper bounds,
it is sufficient to exhibit a sequence of absolutely continuous functions Vn(x)
defined for sufficiently large n when 0 5 ^ x ^ 1 , such that 
is in 5CR and

When M ^ 1, define

in which

so that Vn is absolutely continuous on (0, 1). Since Fn = n2 on (0, M/n2) and
Fn = 0 on (M/n2, 1), it is clear that Fa is in 5R. Moreover VH(0) = 0 and

When M > 1, we define

for values of n such that n ̂  2M1/2/3, M ^ M1/2/(3(A/1/2 - 1)). The function
Kn(x) is absolutely continuous if

and Kn(0) = 0. Moreover, Fn = Ml/2n + Mn2x2, M, and 0 on the indicated
subintervals of (0, 1), and hence Fn is in SJR. Finally,

Minimum-Loss Two Conductor Transmission Lines

Problem 59-4*, by GORDON RAISBECK (Bell Telephone Laboratories).

Let C\ and C% be two closed curves in a plane, one totally surrounding the
other, bounding an annular region. Let ^ be a harmonic function within the
annular region, having a constant value on C\ and a constant value on C^ . If
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this configuration is regarded as the cross-section of a transmission line carrying
a TEM wave, with cylindrical conductors of section d and C 2 , with a lossless
dielectric between them, then the attenuation1 is proportional to

where the single integral is taken over the boundary Ci + (72 and the double
integral over the area between them.

It has been shown1 that under the constraint

i.e., that the harmonic mean of the perimeters of the conductors is fixed, the
minimum of the attenuation a is attained when the boundaries are concentric
circles. Prove (or disprove) that the same conclusion holds under the alternative
constraint that the area bounded between the curves is fixed.

1 Gordon Raisbeck, Minimum-Loss Two-Conductor Transmission Lines, Trans. IRE
PGCT, Sept. 1958.
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10.1 Music

OPTIMAL TEMPERAMENT*

A. A. GOLDSTEINt

We show that musical scales can be constructed by finding solutions of
inconsistent systems of linear equations with various criteria of optimality. As
examples, several typical historical scales are reconstructed.

There is a dual purpose to this note. One is to amuse the reader. For this
reason our style will be semi-expository and the paper will be reasonably
self-contained. The other purpose is to provide a method for generating scales for
possible musical systems.

Information on historical scales may be found in Barbour [1]. The work in [1]
has been made practical by Jorgenson [2], I am grateful to him and the referee for
helpful suggestions.

A (musical) scale is an increasing sequence of positive numbers /i,/2, • • •
called notes or frequencies. A scale is n-tempered if for some positive n,

The ratio /i+M|/i is called the octave. For keyboard instruments « = 12. Our
interest lies mainly for 12-tempered scales.

A scale is called regular, if for each /, fi+i\fi is independent of i. Ratios /)•)/},
fklft, ]'<i<k are said to be consecutive.

Remark. If a scale is n-tempered, then for every integer k > 0, there exist positive
integers I and m such that OT=i (/i+til/i+Ki-i)) =/i+ni = 2'/,. Thus, for this m and /,
the product of m consecutive ratios of the form fi+ki |/1+fc(j_i) spans I octaves.

Proof, n,™ j (/i+fc,-|/i+fc(i-i>) = /i+mfc|/i. Take / so that if m=ln\k, m is an
integer. By (I) fnl+l =/I+««-IK« = 2/i+n(,-i, = 2ft. D

When rc = 12, a regular tempered scale is called equal-tempered. There exists
a unique such scale. The numbers m and / showing Table 1 apply for this case.

* Supported by N.S.F. Grant MPS 72-04787-A02.
t Department of Mathematics, University of Washington, Seattle, Washington 98195.
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TABLE 1

k m I

1 12 1
2 6 1
3 4 1
4 3 1
5 12 5
6 2 1
7 12 7
8 3 2
9 4 3

10 6 5
11 12 11
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Since (fk+i\fi)
m = 21, it follows then that fk+i\fi = 2k/l2. This scale was discovered

in 1533 by Lanfranco. For reasons discussed below it had limited use until the
1800's. Since then it has displaced all its competitors, and is in almost universal use
today.

In what follows we also discuss nonregular and partially regular scales. A
partially regular scale satisfies /,+, |/; - const, for all /' e 7, where I is a proper subset
of the positive integers.

The early Greeks constructed scales by compounding the ratios 2/1 and 3/2.
Later Ptolemy, the founder of trigonometry and refiner of Greek astronomy,
investigated the superparticular series 2/1, 3/2, 4/3, 5/4, • • • . The ratios
2 / 1 , - - - , 6 / 5 and compoundings of these; e.g. 8/5 = (2/l)|(5/4) and 5/3 =
(4/3)(5/4), are especially consonant. By this we mean that when frequencies of
these ratios are simultaneously sounded, the result is pleasing.

There are two musical aspect to scales—the melodic and the harmonic. The
melodic is the impression received when notes are sounded in succession, while
the harmonic, the impression when the sounding of notes is simultaneous.

There is experimental justification for the theses that the melodic aspects of
scales are conventional and learned, while there are convincing theories initiated
by Helmholtz and based on experiment and deduction that there is a real basis for
the harmonic aspect, that is independent of individual experience. The theory
predicts that the superparticular ratios with small integers yield the most conso-
nant simultaneous combination of sounds.

The ratios based on superparticulars and shown in Table 2 were proposed by
Ptolemy. They are called just ratios.

TABLE 2

Ratio Musical name Ratio Compound ratio

fi+i/fi minor second 16/15 —
fi+2/fi major second 10/9 —
fi+3/fi minor third 6/5 —
fi+Jf, major third 5/4 —
fi+s/fi perfect fourth 4/3 —
/,+«//,• diminished fifth 45/32 (9/8)(5/4)
/,+,//; perfect fifth 3/2 —
fi+s/f; minor sixth 8/5 (2/1)1(5/4)
fi+9/fi major sixth 5/3 (4/3)(5/4)
fn-w/fi minor seventh 16/9 (2/1)1(9/8)
fi+n/fi major seventh 15/8 (5/4)(3/2)

If the just ratio is not superparticular, the compound ratio listed shows its
generation from superparticulars. If we use the values from Table 1 and the above
Remark, we find Table 3. From Table 3 we see that the deviation of just ratios
from equal-tempered ratios is surprisingly small. These differences however are
not negligible. Because of the "beat phenomena," (discussed in books on acou-
stics) the trained ear can detect pitch errors in the ratio of 2 simultaneously
sounding notes to 1 cent or less, where ̂  = 1 cent = 21/120° = 1.0005778 has been
adapted as the unit for measuring musical intervals.
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TABLE 3

k (fit+il/i)"1 2f Equal tempered ratios Just ratios

1 (16/15)12 = 2.17 2 21/12 = 1.0595 16/15 = 1.0667
2 (10/9)6=1.88 2 2I/6 = 1.1225 10/9=1.1111
3 (6/5)4 = 2.07 2 21/4 = 1.1892 6/5 = 1.2000
4 (5/4)3=1.95 2 21/3 = 1.2599 5/4 = 1.2500
5 (4/3)12 = 31.57 32 25/12= 1.3348 4/3 = 1.3333
6 (45/32)2= 1.98 2 2!/2 = 1.4142 45/32 = 1.4063
7 (3/2)12 = 129.75 128 27/12 = 1.4983 3/2 = 1.5000
8 (8/15)3 = 4.10 4 22/3 = 1.5874 8/5 = 1.6000
9 (5/3)" = 7.72 8 23/4 = 1.6818 5/3 = 1.6666

10 (16/9)6 = 31.57 32 2s/6= 1.7818 16/9 = 1.7777
11 (15/8)12= 1888 2048 211/12 = 1.8877 15/8 = 1.8750

The equal tempered pure 4ths (4/3) and 5ths (3/2) differ from the corre-
sponding just ratios by approximately 2 cents, which is a small error. But the
major 3rds (5/4) and minor 6ths (8/5) have errors of approximately 14 cents,
while the minor 3rds (6/5) and major sixths (5/3) have errors of approximately 16
cents. The resulting dissonance, (very distinct on the organ) was intolerable tc
many in the 16th, 17th, and 18th centuries, and delayed the universal adoption oi
equal temperament. Literally hundreds of alternative temperaments were exp-
lored [1]. We shall discuss a few of these alternatives after a brief digression.

DEFINITION. An optimal temperament is a temperament in which the ratios
fi\fk approximate just ratios according to some criterion of optimality.

Consider then the system

where ri+kti is the kth just ratio.
This is a nonlinear system of 132 equations in 11 unknowns (we fix /i = 1):

musically speaking, there are 12 distinct ratios of each kind (not counting
repetition in octaves) and there are 11 kinds of ratios.

The above system is nonlinear. The musician's approach is to examine a
companion system to (1) linearized by use of logarithms. Recall that p = 21/120°
and define F/ by the equations, FI = 0 and /UF/~FI = //, =//!/. Then

The numbers r,-+M are the just ratios of Table 2. We shall call the differences
Fj-Fi, intervals. Table 4 compares equal-tempered and just intervals in cents.

The fundamental ratios 3/2 and 4/3 (perfect fifth and perfect fourth) are well
approximated. The most irritating of these errors is the major 3rd and minor 6th,
followed by the minor 3rds and major 6th. The remaining errors are relatively
innocuous.
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TABLE 4
Cen/s (rounded)

Just interval Equal tempered Error

Fz-F-i (minor 2nd) 112 100 -12
F3-F! (major 2nd) 182 200 +18
F4-Fi (minor 3rd) 316 300 -16
FS-FJ (major 3rd) 386 400 +14
Fg-Fj (perfect 4th) 498 500 +2
F7-Fj (diminished 5th) 590 600 +10
Fg-Fj (perfect 5th) 702 700 -2
FQ-F] (minor 6th) 814 800 -14
FIO-F! (major 6th) 884 900 +16
FH-F! (minor 7th) 996 1000 +4
FU-FJ (major 7th) 1088 1100 +12
FU-FI (octave) 1200 1200 0

Since Fi+k -F,•+Fi+i2-Fi+k = Fi+l2-F,•, = 1200, the pairs Fi+k-Fi and
Fi+i2-Fi+k are called complements. They are:

minor second: major seventh,
major second: minor seventh,
minor 3rd: major sixth,
major 3rd: minor sixth,
perfect 4th: perfect 5th,
diminished fifth: diminished fifth.
For example, for each perfect 4th there is a complementary perfect 5th, and

their errors are dependent. Moreover the errors in the seconds, sevenths and
diminished 5th are of negligible importance. We shall consider therefore optimi-
zation over the intervals of the major and minor 3rds and pure fifths. With respect
to perfect fifths, minor and major thirds are complementary, since Fi+3—Fi +
Fi+7-Fi+3 = Fi+7-Fi. We see that errors in these intervals are also dependent.
Observe that, however, if any 2 of the intervals Fi+3 - Ft, F,+7 - Fi+3, and Fi+7 - Ft,
are just, the remaining one is just. For optimization, therefore, we consider only
the intervals of the pure fifth and major 3rd.

Observe that 3 consecutive major thirds must sum to 1200 cents, and just
major 3rds are 386 cents. Equal temperament approximates with each major 3rd
at 400 cents. If all these consecutive 3rds are in equal use in a musical composition,
these 14 cent errors are optimal. If some major 3rds are rarely used, we can make
them larger than 400 cents and render the errors in the consecutive neighbors
smaller. Also, we may wish the errors to be unequal to change "color"—have
some major thirds "smooth" (small errors) and others rough (large errors).

Since the renaissance almost all of Western music has been constructed of
chords based on triads. A chord is the simultaneous sounding of 3 or more notes.
A major triad on F) is the chord (F),Fi+4,Fi+7}, here Fi+4-Fi is a major 3rd,
Fi+7-Fi+4

 a minor third and Fi+7-.F} a perfect 5th. A minor triad on Fj is the
chord {Fh Fi+3, Fi+7}. Here F)+3 -F) is a minor third and Fi+7-Fi+?, a major third.
The minor triad relative to Fj is the minor triad {Fi+9, Fi+t2, Fi+]5}.
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A well-tempering is a tempered scale in which all major and minor triads on
Fit lg/^12, are acceptable. This means that errors in the thirds from just
intervals are less in absolute value than approximately 25 cents, and errors in
perfect 5ths less than approximately 12 cents in absolute value.

Examples of historical temperaments. We shall reproduce the major histori-
cal temperaments. To do this we shall specify all the major thirds and optimize
over the perfect 5ths.

Let

Given ait l^i §12, specifying .4 of the F, determines the remaining 8. Since
Ft = 0, there are 3 free variables: F2, F3, and F4. We use these to optimize over the
fifths:

Jsing (3) we can rewrite (4) as:

The above is a system of 12 equations in 3 unknowns. We digress to discuss
the "optimal" solution of such a system. Further information may be found in [5].

Let A be an m x n matrix, x and b column vectors of dimension n and m,
respectively. Assume m>n. The system

is generally inconsistent. (It is consistent if and only if b lies on the range of A.)

Since Fl2+i = F, -f-1200,

(major thirds).
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Let || • || denote a distance function (norm) on m vectors. We shall use 2 such
functions:

and

An optimal solution of Ax = b with respect to the norm || • || is an rc-vector x such
that

The vector x always exists and it effects the best "compromise" solution in the
sense that the m-vector Ax is as close as possible to the m-vector b, (Closeness
here is measured by our distance function || • ||.)

The problem when ||-|(2 is used is called "least squares" and x2 satisfies the
n x n system of linear equations:

where A* is the transpose of A. These equations follow from the fact that b is
closest to Ax 2 in the range of A. Hence (b — Ax2) 1 range of A. Since range of A is
spanned by columns of A, A*(Ax2 — b)=:Q.

When || • ||co is used it is possible to find xx as a solution of a linear program-
ming problem. This distance function is a natural one for musical scales, because
the worst departure from just intonation is made as small as possible. The
following condition ensures xx is optimal [4, p. 35]. Let (Ax -£),- denote the rth
component of Ax-b, and A, the ith row of A. If j|Axco-6|U = Ui^Ax^-b)^,
u,r = ±1, 1 s k g r g m, and 0 belongs to the convex hull (uikAik: 1 ̂  k g r], then
||Afco-i||oo = ||-4j:-^||eo for all n-vectors x. We shall see below that because of
special structure in the examples below x2 = *<», so that the least squares solution
may be employed.

Again, because of the simple structure of the scale equations a criterion of
optimality can be employed which would not be useful in general. We call XQ an
optimal interpolatory solution of the system

if the number of components of the vector Ax0 - b which vanish is maximal over
all n-vectors, x.

In general we could not expect more than n components of Ax -b to vanish
for any x, but because of the special structure in the scale problem this can happen.

We first consider equal temperament from the point of view of optimizing
over the perfect fifths.
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Example 1. Equal temperament. For equal temperament we set a, = 400 and
get from (5)

(The set (6) is repeated 3 times.)
f?rtr OWOt^TYl i&\

The condition A *(Ax -b) = 0 yields F2 = 100, F3 = 200, F4 = 300, and

Let A' denote the rows of A. Since \\Ax — b\\x = 2 and 0 belongs to the convex hull
of {-A l,A2,A3, A4}, Ax is a best uniform approximation of b also. Using (3) we
get F = 100.

Example 2. Meantone tuning. We next give an example of a non well-
tempering, that is partially regular. This temperament called the common model
meantone temperament, or simply meantone temperament, was the most used
single temperament for approximately 200 years. It was invented by Pietro Aron
in 1523. It is the acme of Baroque harmoniousness. With this temperament, 8
major triads are very consonant with just major 3rds. The 8 relative minor triads
are very consonant with minor 3rds in absolute error of 5.5 cents. The perfect
5ths in these triads have an absolute error of 5.5 cents. Two out of 3 consecutive
major 3rds are just. A tvpical assignment of major 3rds would be:

We now have the equations



MUSIC 249

(The set (7) is repeated 3 times.)
As before we set

The condition A*(Ax - 6) = 0 yields F2 = 75.5, F3 = 193 and F4 = 310.5 and

Since 0 belongs to the convex hull of {A1, A 2, A3, -A 4} Ax is an optimal uniform
approximation to b also. The remaining F; can be found from (3).

Example 3. Werkmeister temperament # 1. The urge for the general use of
more than 8 major and minor triads led to the development of well-tempering.
The most famous well-tempering, other than equal temperament is called Werk-
meister's temperament # 1, invented by Andreas Werkmeister in 1697. Accord-
ing to Barbour [1], J. S. Bach was reported to have said he was not in favor of
equal temperament, so that his "well-tempered Clavier" must have had a
temperament such as the Werkmeister # 1 in mind. On the other hand it appears
that C. P. E. Bach, the son of J. S. Bach, was in favor of equal temperament. (This
statement is made in his book on the art of playing the keyboard.) Temperaments
of the Werkmeister type divide the triads in 3 categories—smooth, moderate and
rough. In comparison, in equal temperament all the triads are moderate. The
calculation of this temperament is somewhat less trivial. The assignment of major
thirds for this temperament is

The eauations become
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CLAIM. The optimal interpolatory solution of the above system is unique and 8
equations are satisfied.

Proof. There are only 4 distinct linear functions in (S) namely F2,F4,F4-
F3, F3-F2. Given numbers «i, n2, n3 and n4 the system

There are no others. Only the last is consistent. This is the Werkmeister tempera-
ment. The scale is 0,90,192,294,390,498,588,696,729,888,996,1092,1200.

A simpler temperament is due to Marpurg. Here at = 400 1^/^12. Similar
reasoning yields 9 pure fifths. The scale is 0,98,204,302,400,498,604,702,800,
898, 1004, 1102, and 1200.
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11. Stochastic Models

THE PIG HOUSE PROBLEM
OR

THE DETECTION AND MEASUREMENT OF
PAIRWISE ASSOCIATIONS*

R. C. GRIMSONt

Suppose that a box contains 2 A's, 2 B's, 2 C's, etc. If k letters are drawn at
random and without replacement from the box, then the sample may contain
some twin pairs. If many twin pairs result to the extent that the probability of that
happening is small, then the randomness of the selection process is suspect and
evidence for a pairwise association exists.

In this paper we introduce statistics for testing the null hypothesis that there is
no pairwise association for this model and two companion models. Using only the
assumption of randomness we find exact and asymptotic formulas for these
statistics and we point to some applications.

In order to define the problem explicitly, it is instructive to exhibit the manner
in which it arose. More important, however, is the fact that the formulas are
applicable in several other settings where the model (sometimes subtly) fits.

For the past several years many swine herds throughout the United States
have experienced a problem of tuberculosis lesions. In 1972 the Meat Inspection
Regulations were amended so as to require the entire carcass condemned if
lesions are found in more than one site. This change along with the increase in the
price of hogs has brought this problem to its present significance; it particularly
affects the farmers and meat packers.

The problem is to identify media of tuberculosis transmission.
As in most epidemiologic investigations, many issues surface including the

necessity to account for about twenty-five host, parasite and environmental
factors. But one of the specific questions concerns a suspected farrowing house
(Fig. 1). Roughly, the empty house is filled with pregnant sows and when the
piglets become a certain age, they are moved to a nursery. The house is then
prepared for another group. This cycle repeats itself four times a year.

* Received by the editors August 3, 1976, and in revised form November 5, 1976.
t Department of Biostatistics, School of Public Health, University of North Carolina, Chapel Hill,

North Carolina 27514. This work was partially supported by National Institutes of Health under Grant
5 F22 ES01633-02.
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FIG. 1. rarrowmgHouse
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The small rectangles that straddle some of the pens are areas in which the
piglets from both pens share heat lamps, spend most of their time and have some
between pen contact with one another through slats in the sides. This basic
arrangement is popular and has economic advantages.

In addition to several management-health questions, the following emerged:
Is there any evidence based on the data that suggests that the health situation
would significantly improve if (through design or renovation) there were no
between-pen contact under the heat lamps? Implicit here is the idea that if there
are lesions (one or more) from pigs farrowed in a given pen, then such are more
likely to be found via its paired pen; i.e., some of the contagion is transmitted
through this contact. Ideally, the pens contain nearly equal numbers of pigs.

We conceive of precisely three types of structures illustrated in Fig. 2 with
lengths of 4, 5 and 4.

The fundamental properties are portrayed by the following sequences of n
odd-even symbols:

First, we shall consider cases I and II together. In these cases the oe pairs
represent the pairs for which we are testing for pairwise association. Let X be a
random variable denoting the number of marked oe pairs (pairs sharing common
facilities and for which infection is observed). Let f(n, k) denote the number of
distinct selections of k letters from the n letters of the sequence such that no oe
pair is selected. If k is the total number of infected individuals in a group of n and if
a is an integer, then the probability that X is larger than or equal to a is

where r is the number of oe pairs; r = n/2 if n is even and r = (n~ l)/2 if n is odd.
The hypothesis, H0, of no pairwise association may be tested by setting a

equal to the number of observed marked pairs so that P(X ^ a) is the probability
of getting an arrangement at least as extreme as the one we observe under the
assumption of randomness. Thus, if P(X ^ a) is less than a prescribed significance
level, then we would not accept HQ.

For the n even case, all selections of k letters for which no oe part is present
can be realized by first selecting k oe pairs and then choosing one letter from each
pair. Hence,

Also, we note that

FIG.2

n evev case

n odd case

n evev shifted case.

(n evev)
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Replacing n by n +1 and applying (2) we find

Next, in considering case III we let X denote the number of marked eo pairs.
If g(n, k) denotes the numbers of distinct selections of k letters from the n letters
of III such that no eo pair is selected then (1) with g replacing/ remains valid. In
this case r = n/2-l.

Selections of k elements from the shifted sequence may be put in 1-1
correspondence with selections from eo • • • eo, the n even sequence reversed.
Associate the two endpoints of the shifted sequence with the last pair of the
(reversed) n even sequence. Then including both e and o of this last pair there are
f(n -2,k-2) possible selections (this is legal since it corresponds to the end
points of the shifted case, two letters not forming a marked pair). Otherwise there
are f ( n , k) possibilities. Hence,

(« even shifted).

The results are summarized as follows:
Result.

where one of the following cases pertai

(n even, X - number marked oe pairs),

(n odd, X = number marked oe pairs),

(n even shifted, X = number marked eo pairs).

For computation purposes we note the handy formula

It is appropriate here to exhibit three new identities that follow from (3) and
the> r\e>finit\r\r\c r»f f*

For the n even case we note that

n

(n even).

(n odd).

For a related formula,see Gould [1,eqs.3.22].



For the other two cases we could go through a similar argument but it is clear
from the nature of the problem that as n becomes large, the distributions for the
three cases become identical because what happens at endpoints of oe sequences
becomes insignificant.

Formula (4) is to be used only for large values of n; on the other hand, the
exact formula (3) is easy to apply by using the table for / mentioned in the last
paragraph of the paper.

Fortunately, most applications are of the n even type, though the statistics
were originally motivated by the n even shifted case. Because of the frequent
occurrence of symmetry and binary processes in our environment, it is envisioned
that in the proper setting the methods developed here are applicable to many
infectious (or more generally, association) processes in which natural pairing
pertains, e.g. eyes, breasts, lungs, two-to-a-room situations (dorm, hospital, cage),
twins, married couples, matched pairs.

It becomes apparent that many generalizations can be defined. One interest-
ing generalization which would have meaning in the farrowing house problem but
in few others is realized when in addition to counting marked pairs, we want to
count the other pairs with less weight, say half the weight. This and more
straightforward generalizations are open and await further development. Also,
improved approximations to the present case are sought. Even if pairwise
contagion is known to exist, it is a simple matter to conceive of P (or 1 - P) being a
measure of this association and perhaps this is the main merit of P. For example,
we suggest that 1 —P is an excellent measure of the extent of the tendency of, say,
breast cancer or lung cancer to locate pairwise (on an individual).

Finally, P emerges as a natural statistic to apply for certain questions arising
in some clinical trials and prospective studies. Here we have a curious overlap
between the n even case of this paper and a special case (r = 2) of some formulas
that materialized in a completely different context by different methods in [2].
When two treatments are being compared or when a study group is being
compared with a control group, two series of trials, A and B, must be formed.
Ideally, the assignment of a person to group A or B should be done by a strict
randomization process unless a matched design is preferred. But due to limita-
tions in time, numbers of patients, funds, etc., investigations often resort to
systematic allocation or paired sampling or some other methods of "convenience
matching". Such is often perceived to be independent of outcome; however,
classical cases attest to the subtle fallacy of this in several studies. P may be applied
in testing for this independence; in [2] further remarks are made along these lines.

As an aid to those who wish to use one of the exact formulas, this author
would be pleased to supply a table of values for f ( n , k) for n, k g 30.
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is a polynomial in n. The summand becomes

The maximum exponent of n occurs where / = a. This implies the asymptotic
results that as n becomes large
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RELIABILITY OF MULTICHANNEL SYSTEMS*

R. R. CLEMENTSt

Abstract. The results of simple probability theory are applied to the analysis of the reliability of
multichannel redundant systems. The significant reductions in instantaneous probability of system failure
achieved thereby are illustrated for the cases of nonageing and linearly ageing channel components. A model
of component usage for systems with ageing components is derived.

1. Introduction. This material has been used by the author for a number of years as
motivational and illustrative material with second year aeronautical engineering
undergraduates. These students receive a 'core' mathematics course in common with
students of other engineering disciplines and a number of additional lecture and tutorial
sessions at which applications of the core mathematical content to aeronautical
engineering topics are studied. In these sessions it is intended to introduce students to
methods actually used in practice and an integral part of the illustrative material is the
introduction of typical numerical values of physical properties to familiarize students
with the range of values with which they will operate.

The basic probability theory the students have learnt is applied to the analysis of
multichannel systems designed to achieve high system reliability (low instantaneous
probability of failure) such as is required by aircraft control and stability augmentation
systems, etc. The results obtained are seen to be qualitatively consistent with common
sense (an important consideration in motivating engineering students to use mathema-
tical methods to explore their own disciplines) and to enable quantitative design
conclusions to be drawn.

2. Reliability. Consider NQ identical components under test. After a time t letN(t)
be the number still operating. Then

* Received by the editors May 15, 1978 and in revised form March 16, 1979.
t Department of Engineering Mathematics, University of Bristol, BS8 1TR, England.

is called the reliability of the component. For a single component R (t) is the probability
that the component operates until a time greater than t.
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The mortality of a component, m ( t ) , is the probability of failure of a component at
age t. Thus

Therefore

Thus m (t) is related to the probability density function of R ( t ) . (It is, in fact, the p.d.f. of
1 -/?(/), the unreliability of the component.)

We also define the instantaneous failure rate A ( ? ) as

therefore

and

The essential difference that must be appreciated between m(t] and A ( r ) is that
m (t) is the a priori probability of failure at a given age at the start of the operating period
while A (t) is the conditional probability of failure given that the component has survived
until age /.

The expected life of a component is

-U

3. Parallel systems. Suppose, in order to improve, or to attain a minimum

of a component operating at t
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acceptable level of reliability in a system, several components are used in parallel so that
a system failure occurs only if all the components fail simultaneously. This is common
practice on systems requiring high reliability for safety reasons, e.g. command and/or
stability augmentation systems on aircraft using 'fly by wire' philosophy, control surface
actuator systems. Let /?„(:) be the reliability of a system with n parallel channels. Then

The system only fails if all the component channels fail, so, if the reliability of a
single component is R ( t ) ,

P{Life of system ̂  t] = (P{Component life § /})"

therefore

Hence we have, for mn(t) and A n U )

Now

and

4. The case when A( f ) is constant. Certain components of systems can. to an
adequate degree of accuracy, be assumed to have an instantaneous failure rate that is
independent of the age of the component. Modern solid state electronic devices are
commonly assumed to be of this type. Real time computer software is also judged by
some experts to fall into this category. For systems composed of such components in
parallel, the analysis can be carried further and predictions of system failure charac-
teristics made. From these inspection schedules can be set which ensure an adequately
small probability of system failure in service.



Let

Then

Then

i.e., 1/V is the expected life of the component (in hours say) and fj. is the failure rate of
the comoonent oer hour

Figure 1 illustrates the form of R n ( t ) for n = 1, 2, 3, 4, 5. For a given component
failure rate /n, the reliability of the system increases with n, but not very sharply. The

significance of multichannel systems is seen fully when \n(t), the instantaneous failure
rate, is considered.

Therefore

For /4t« 1,
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and

i.e., for small /u/ the graph of log (\n) - log (/*) against log (/*/) is asymptotic to a straight
line of slope (n — 1)

therefore

i.e., for large (jit the graph of log (A,,) - log (/u) asymptotes to zero. Physically this results
from increasing channel failures, pt » 1 implies r» l / / u , i.e., the average life of the
channel components is greatly exceeded. For such iarge times many channels in a
multi-channel system will have failed. Finally the system reaches the state where it is
operating on one channel only so its instantaneous probability of failure is that of a
single channel. Hence A f l ( r ) ^ / u as i'->oo, so log (An)-log (^)-»0. Figure 2 shows the
graphs of log (A,,)-log (/LI) against log (/LI) for n — 1, 2, 3, 4, 5.

Although the failure rate of the system components are independent of component
age, the failure rate of the system as a whole is a function of age. For small /LA/, the failure
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rate of the system as a whole is very greatly reduced by the use of multiple channel
systems. Small /uf will be consistent with moderate ages, t, of the system if the single
component failure rates are small. For a given acceptable system failure rate, using
components of known constant failure rate, Fig. 2 enables the system life to be
determined. For instance, using components with /j. = 10 4 failures/hour a duplicated
system would have a system failure rate less than 10 failures/hour for log (/j.t)< —3.3,
i.e., t < 5.01 hours whereas a triplicated system would have a failure rate less than 10 ~ 7

for t < 2.01 x 10' hours. At the end of the system life the system can be renewed by
independently checking each channel. If all the channels are found to be operative the
system is effectively returned to a zero age state since the individual channel
components do not age. Any number of channels less than the total number of channels
may be found to have fai led and replacement of such channels with similar operative
components will again return the system to the zero age state.

An interesting contrast to the significant decreases in instantaneous failure rates
achieved by multichannel design is the relatively small increase in expected life of the
system. For a multichannel system

and putting s = 1 - e '", we obtain

Thus a duplicated system only has an expected life (i.e., mean time between failures) 1.5
times that of the basic system components. Of course, for sensitive systems, whose
failure may lead to the loss of an aircraft, it is not the mean time between failures that is
important but the instantaneous probability of failure, and multichannel systems offer a
very satisfactory solution.

The choice between duplicated, triplicated or higher multichannel systems is
affected by other criteria as well as achieving a satisfactorily low probability of failure.
For a given channel failure rate and target system failure rate, the time between
inspections can obviously be increased by using a larger number of channels. The
proportionate gain decreases however. For instance, in the example quoted before, a
quadruplicate system would only increase system life from 2.01 x 102 hours to 6.31 x
102 hours. Such an increase may not bring sufficient benefits to compensate for the
additional weight and cost of the extra channel.

5. The case when components age linearly. Consider now systems composed of
components whose instantaneous failure rate increases with time. Many mechanical
and hydraulic components, over at least part of their working life, can be represented as
ageing in this way. Such components are normally considered to have a "burn in"
period when failure is more likely, followed by a period of relatively steady wear until
old age when failure rate rises sharply again. Here we will consider multichannel
systems composed of components whose instantaneous failure rate can be represented
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by A (t) = ̂ t. Then

Thus IJL is (w/2)172 times the reciprocal of the mean time between failures of such
components, or ( i r / 2 ) l / 2 time the average failure rate.

For such svstems we have

therefore

For

As for the A (t) = p. case the graphs of log (An) against log (^f) tend to a series of straight
lines, but of slopes (2n - 1), when /if« 1.

For/xf »1, 7?(r)H.Oand

therefore

Figure 3 shows curves of log (An)- log ̂  against log (ju.f) for this case. This figure,
like Fig. 2, can be used for determining the life of multichannel systems composed of
:omponents with known average failure rate and linear ageing when the system must
neet any instantaneous failure rate criterion. It is apparent that, if the acceptable failure
rate of the system is of the same order as, or greater than, /u for the system components,
10 gain will result from multichannel design since, for log A n > log /* + 1 the curves are
ndistinguishable and for log A n > log M there is little difference. As before, the
iignificant gains occur when the design calls for much higher reliability than a single
:hannel can provide over significant times. For systems composed of components that
ige, independent inspection of the channels at the expiry of system life does not return
:he system to zero age as the channels have individually aged even if they have not yet
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failed. Normal practice with such systems is to remove them from service at the expiry of
their reliability life and either scrap or renovate the components, replacing the system in
service with a new zero age one. In this case a model of comparative component usage
rates for different multichannel systems is of interest.

Let Tn be the life of an n -channel system with /LI =/x,0 for each channel and a
required system reliability of </> say, i.e. the system must satisfy A n ( r ) < < £ V r < Tn, so
\n(Tn) = tj> since \n(t] is monotone increasing with T. Thus

satisnes

that is,

For numerical illustration take, again, a desired system reliability of 10
failures/hour and components with A (t) = not, /u.0 = 10~4 say. Table 1 gives system life
and system component usage rates for single, duplicate, triplicate, etc., systems
satisfying the quoted system reliability. (Figures for 50 and 200 channel systems are

Rate of usage of components,

hours

units/hour.
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included to show the trends. Such systems are highly unlikely to be considered in practi-
cal applications.) As with systems composed of nonageing components, the propor-
tionate gain in system life decreases as the number of channels increases. Further the
component usage rate actually reverses and increases for large numbers of channels.
The proportionate gain in system life from adding extra channels is finally outweighted
by the extra components used. This ignores any other disadvantages of using high
multiplicity systems such as extra weight, volume, etc. All these factors together
combine to set an upper limit on the number of channels it is worthwhile using in
practical design. For aircraft control systems, particularly in "fly by wire" applications,
where system failure would bring a high probability of loss of the aircraft, triplicate and
quadruplicate systems are currently most favored.

Acknowledgments. The author would like to thank those colleagues whose
discussions have contributed to the development of this material.

IONIZATION IN DIPROTIC ACIDS*

HOWARD REINHARDTf

In this note we present a combinatorial approach to the ionization of diprotic
(DI —(- PROT(ON) + - 1C) acids, such as those in Fig. 1. In solution, three species
exist: A molecule can be fully ionized, half-ionized or un-ionized. Expressions for the
distribution of the species in a solution are commonly derived [2], [4] by assuming
sequential ionization with different ionization constants for the two ionizations. However,
the diprotic acid is sometimes considered as two independently ionizing monoprotic acids
[1] and in such cases the intuitive argument involving sequential ionization seems
contradictory.

Motivated by the suggestion of two independently ionizing monoprotic acids, we
propose the following question as a model for the ionization: A room contains m men and

'Received by the editors September 20,1980, and in revised form April 23, 1981.
tDepartment of Mathematics, University of Montana, Missoula, Montana 59812.

TABLE 1

" rn [/„

1 l .OOxlO 1 l .OOxlO"1

2 1.00 xlO3 2.00 xlO"3

3 2.66xl03 1.13xlO'3

4 4.12xl03 9.72xlO~*
5 5.28xl03 9.47x10"*
6 6.21X103 9.66x10"*
7 6.97 xlO3 1.00 xlO"3

8 7.59 xlO3 1.05 xlO"3

9 8.11 xlO 3 l . l l x lO" 3

10 8.55X103 1.17X10"3

50 1.26x10" 3.96 xlO"3

200 1.37x10* 1.46xlO"2
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w ^ 2m women. Each woman chooses at random and holds the hand of a man (i.e., each of
the (2

M
m) configurations of women holding men's hands is equally likely). Borrowing from

the language of urn models we say that a man is doubly-occupied, singly-occupied or
unoccupied if his hands are held, respectively, by two, one or no women. What is the
probability distribution of the numbers of doubly, singly and unoccupied men?

In this model, men correspond to acid ions and women to protons, so that doubly-
occupied, singly-occupied and unoccupied men correspond, respectively to un-ionized,
singly ionized and doubly ionized acid molecules.

The language of the problem is borrowed from Johnson and Kotz [3, p. 121] who
suggest the following as arising in a chemical industry inquiry:

There are n men in a room; n women enter the room, and each selects a man at random and
holds one of his hands if not already held by another woman (so that no man can be selected by more
than two women).

Find the joint distribution of the number of men with (i) both hands, (ii) one hand, (iii) neither
hand held by a woman.

Johnson and Kotz do not give specifics of the chemistry problem. Their model is not the
appropriate model for diprotic acids; a chemist friend says that protons are interested in
hands, not men.

Our problem is easily solved with techniques accessible to beginning students of
probability. Let X0, X\, X2 be respectively the number of un-, singly- and doubly-occupied
men. We note that X0 + Xt+X2~m and X,+2X2 = w. Hence P ( X 2 = j ) =

FIG. 1. Two diprotic acids.

P(Xt = w — 2j) =•- P(X0 = m — w +j) and we need only compute P(X2 =j)- There are
(t") possible configurations. We arrive at a configuration with X2 ~j by selecting they
doubly-occupied men ((") choices), selecting the singly occupied men from the remaining
men ((™~J

2J) choices) and finally selecting for the singly-occupied men the hand which is to
be held (2w~2j 'choices). Hence

These numbers, summed over all possible values of/, must add to 1; that they do can
be determined independently by examining the coefficient of xw in the identity
(1 + x)2m = (1 +2x + x2)m. It follows that, in particular,

an identity we snail use oelow.
One can find the mean and variance of X2 by first finding the factorial moments
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and

Using the standard procedure for computing factorial moments we can reduce the
fractions inside the summation sign and use the fact that Hj (™)(™l{j)2"~2J =•(*?) to
determine the factorial moments.

Alternatively, one can write X2 = /, + • • • + lm where 7r is the indicator random
variable for the event "the rth male has both hands held." Then

and, with r ¥= s,

Linearity of expected value then allows computation of E(X2) and E(X\). Finally,
with either starting place, one finds

For the chemical application, m and w are both large. The results are conveniently
expressed in terms of X = w/m, the average number of protons bound to an acid molecule.
If we let Y2 = X2/m, the fraction of unionized molecules, we find E(Y2) * X2/4 and var Y2

- (4X2 - 4X3 + X4)/16m. Since m is large, Chebyshev's inequality shows that, in any
reaction, the fraction of unionized molecules will be essentially X2/4. The fractions of
fully-ionized and half-ionized molecules will be 1 - X + X2/4 and X - X2/2 respectively.
Since X depends only on a single ionization constant and the relative abundance of acid
molecules and hydrogen ions, this result is satisfactory for the chemists' purposes. (A
more sensitive result could be obtained from an appropriate central limit theorem.)

From a model builder's point of view, it is reassuring to learn that the results agree
with experimental evidence and the traditional chemist's argument involving successive
ionizations.
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A PROBABILISTIC LOOK AT MIXING AND COOLING PROCESSES*

E. WAYMIREt

1. Introduction. Since applications are receiving more emphasis in the core
curriculum for mathematics majors, it is desirable to have examples which possess a
depth of quality equal to that of the mathematical topics being illustrated. In the case
of applications of logarithms and exponentials in the calculus it is becoming popular
to include problems on mixing and cooling processes in addition to the standard
growth and decay processes (see [3] and [4], for example). The purpose of this article
is to illustrate that just as with the growth and decay process, the mixing and cooling
processes also provide good examples to build on in probability courses. This is
achieved by adapting the point of view of classical statistical mechanics. Aside from
providing us with an opportunity for reinforcement of the basic understanding of these
processes, consideration of these two problems also enables us to introduce funda-
mentally important modes of thought in classical physics within a context already
familiar to most students.

2. Mixing processes. In a typical problem on mixing we are given a vessel 5
which holds a volume V of liquid. It is supposed that initially there is a concentration
Co of solute (salt, for example) dissolved in the liquid. By the concentration of solute
is meant the mass of solute per unit volume of liquid. Starting at time t = 0, a
liquid-solute solution of concentration Ci runs into the vessel at a constant rate r. It
is assumed that the two solutions mix instantly, being kept uniform by stirring, and
the excess drains off. One then asks for the concentration C(t] of solution at time t
as well as for lim,_co C(t}. Of course it is found that

For our probabilistic model of a mixing process we shall adapt the point of view,
used by Smoluchowski in his elegant analysis of Einstein's theory of concentration
fluctuations under diffusion equilibrium (see [1] for an excellent review). It is assumed
that the solute particles are identical in size, so that the total mass at any given time
is proportional to the number of particles present. During each (small) unit of time
A/ a Poisson-distributed number of solute particles with mean A = CirAf enter the
vessel. In addition, provided that the solute is sufficiently dilute and well stirred, each
solute particle present in the vessel independently of the others has probability
p = r&t/V of being displaced from the vessel in each interval of time. Let Xn denote
the number of solute particles in 5 after the nth time period. Then the flow equation
is given by

* Received by the editors July 15, 1980, and in revised form April 3, 1981.
t Department of Mathematics, University of Mississippi, University, Mississippi, 38677.

where Ln is the number of particles which left the vessel during the nth time period
and /„ is the number of particles which entered the vessel. Observe that, given Xn~\,
Xn-\-Ln is (conditionally) binomially distributed with parameters Xn-i and q = l—p,
and is independent of /„. Let i/»n(z) = E(zx" X0 = N) denote the probability generating
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function of Xn. Then

Iterating (2.4) we obtain, as probabilistic analogues to (2.1) and (2.2),

In particular, the steady state distribution is Poisson with parameter \/p.
In order to see that the stochastic model agrees with the deterministic model on

a "macroscopic" level, let mn - E(Xn\X0 = m0). Then from the flow equation we obtain

So, again after an iteration, we have

For a comparison with (2.1), write / = n • Af. Then,

3. Cooling processes. Another important example from the physical sciences
which is familiar to most students with only a calculus background is Newton's law
of cooling (see [3] and [4]). Here the classical Ehrenfest model for heat exchange (see
[2]) is a natural candidate for the probabilistic counterpart. Although the Ehrenfest
model is traditionally used as an aid to understanding the irreversibility paradox in
thermodynamics and statistical mechanics, a discussion based on Newton's law of
cooling seems to be more readily accessible to students freshly out of calculus.

Newton's law of cooling states that the time rate of change of the temperature
of a cooling substance is proportional to the difference between the temperature of
the substance and that of the surrounding medium. Letting T, denote the temperature
of the substance at time t and letting E0 denote the (equilibrium) temperature of the
surrounding medium, we obtain

where a > 0 is the constant of proportionality.
The Ehrenfest model consists of two boxes I and II, together with 2N balls

labelled 1, 2, • • • , 2N. Initially some of the balls are in box I and the remainder are
in box II. At each instant of time a ball is selected at random from the balls numbered
1, 2, • • • , 2N and is moved from the box in which it is contained to the other box.
The number Xn of balls in box I at the nth period of time is regarded as a measurement
of the temperature of the substance at time n. The probabilistic counterparts to (2.1)
and (2.2) are obtained by calculating the one-step transition probabilities and the
invariant initial distribution TTO respectively. ir0 is binomial with parameters 2N and
2 ([2]). At this point an analysis of the precise nature of the probabilistic analogue to
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(3.2) offers an excellent opportunity for a discussion of the role of periodicity in
Markov chains.

To see that the macroscopic law of Newton holds within the context of the present
model, we let Tn = E[Xn\X0 = i] denote the average temperature of the substance
when the initial temperature is T0 = /. Writing Xn = Xn-i + (Xn -Xn-\) and conditioning
this equation on Xn~\ and X0, we obtain the macroscopic evolution equation

Upon iteration of (3.3) it then follows that

Observe that E0 = N. is the mean equilibrium temperature, since EVo(Xn) = 5 • (2Af) = N
is the mean temperature when the process is in the steady state ir0. For a further
comparison with (3.1), note that i = T0 is the initial temperature of the substance.
Moreover, if r denotes the time between transitions (relaxation time) then in time
t>0 there are n = t/r transitions and

for large n (small T).

REFERENCES

[1] S. CHANDRASEKHAR, Stochastic problems in physics and astronomy, Rev. Modern Physics, 15 (1943),
pp. 1-89.

[2] W. FELLER, An Introduction to Probability Theory and its Applications, vol. 1, John Wiley, New York,
1968.

[3] M. A. MUNEM AND D. J. FOULIS, Calculus with Analytic Geometry, Worth, New York, 1978.
[4] A. SHENK, Calculus and Analytic Geometry, Goodyear, Santa Monica, CA, 1977.

POISSON PROCESSES AND A BESSEL FUNCTION INTEGRAL*

F. W. STEUTELf

Abstract. The probability of winning a simple game of competing Poisson processes turns out to be equal
to the well-known Bessel function integral J(x,y) (cf. Y. L. Luke, Integrals of Bessel Functions, McGraw-Hill,
New York. 1962). Several properties of /, some of which seem to be new, follow quite easily from this
probabilistic interpretation. The results are applied to the random telegraph process as considered by Kac
[Rocky Mountain J. Math., 4 (1974), pp. 497-509].

Key words. Poisson process, Bessel function, random telegraph
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1. Competing Poisson processes. Several problems can be described as follows:
An object has to travel a distance x; it does so at unit speed, but it is obstructed at
random moments and then held for a random period of time before it is allowed to
continue. The object may be a particle moving between two electrodes, a person
walking to a bus stop, or, as in [5, Problem 147], a book being read with random
interruptions. The question is: What is the probability that the object reaches its
destination at a moment not exceeding x+yl The situation may be modelled as a game
of two competing (Poisson) renewal processes in the following way (see Fig. 1):

Let Xlt YJ, X2, Y2, • • • be independent, exponentially distributed random variables
with expectation one. Two persons, X and Y, take turns drawing lengths Xj and Y,.
Person X starts, and wins if the sum of his Xj exceeds x before the sum of Y's Y,
exceeds y.

More formally, if Nx and Ny are random variables defined by

then (remember that X starts)

Remark. For our purposes the assumption that EXj=EYj = l for j= 1,2,• • - , is no
restriction: replacing Xj and Y} by X}/\ and Yj/n, respectively, is equivalent to replac-
ing x and_y by \x and py, respectively. The process Z(f) depicted in Fig. 1, represent-
ing the distance travelled by the object at time t, would, of course, be changed by a
transformation of the Xj and Yj.

We shall use the following two well-known facts: Ny — 1 has a Poisson distribution
u/ltVi mf»5in i; 1 p

and Xi + • • • + Xn has a gamma distribution with density
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Now, let J(x,y) be defined by (cf. Luke [4, p. 271])

where 70 is the modified Bessel function of order zero:

Then we easily obtain
PROPOSITION 1.

Proof. By (l)-(5) we have

Remark. Srivastava and Kashyap [6, pp. 77, 78] consider an equivalent interpreta-
tion, in the context of a randomized random walk; there the interpretation remains
implicit and is not pursued.

2. Properties of J(x,y). Several properties of J ( x , y ) follow immediately from (6).
We list the following six together with their simple proofs.

7rom (2) and its counterpart for Nx (independent of Nv) it follows that

From this we conclude using (6) that

and especially

Conditioning on Xr = u, with density e ", we have



That J(x,y) actually satisfies (7) follows easily from the Berry-Esseen version of the
central limit theorem (Feller [1, p. 542]).

Remark. Relation (7), of course, also holds without the term ^. In practice the
approximation (8) is much better than is suggested by (7). For values of x and y of 10
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or in view of (5)

ivhich seems to be new. Rewriting (v) as

and differentiating with respect to x, using (4) we recover (iii):

Several other relations given in [4] are easily obtained from (i)-(vi). In §3 we collect
some asymptotic results.

3. Asymptotics. From the probabilistic interpretation the following limit relations
are quite obvious (it is easy to give estimates; also compare (v)):

For both x and y large we have the following very simple relation, which seems related
to expansions in [2] involving the error function, but which seems to be new in this
form. Its proof is a simple consequence of the asymptotic normality of Poisson random

where $ is the standard normal distribution function defined as

Proof.

where the j is the usual "continuity correction". As NX-NV is asymptotically normal
with mean x—y and variance x+y, it follows that

PROPOSITION 2. For
VARIABLES WITH LARGE MEANS.
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and higher it yields a result correct to about three decimal places. Two examples: x = 10
and y = 20 yields .7(10,20)=0.974206 and $(10.5i/30)=*(1.917)=0.972. For jc=^ = 50
we find 7(50,50) = 0.519972 and 0(0.5/10)= $(0.05) = 0.5199. The abundance of tables
of 4> makes the approximation (8) quite practical. To obtain good (proven) bounds is
not so easy.

4. Relation with Kac's random telegraph model. In [3] Kac considers an (in-
tegrated) telegraph process X(t) (in his formula (25) denoted by *(/)) that is closely
related to the process Z ( t ) of Fig. 1. The process X(t) is constructed from the same Xj
and YJ as Z(t); its graph is sketched in Fig. 2. Evidently, the processes Z ( t ) and X(t)
are related by

From Fig. 1 we immediately see that

Z(x+y)>x**Nx^Ny,

and therefore by Proposition 1 we have, in view of (9),

PROPOSITION 3. Let F(x,t) = P(X(t)^x) be the distribution function of X(t). Then
forO^x^t

From Proposition 2 we then obtain, not very surprisingly,
COROLLARY.

i.e., X(t) is asymptotically normal with mean \ and variance t.
Remark 1. Of course, X(t) is also asymptotically normal with mean zero and

variance /; the ^ will improve the approximation, though.
Remark 1. Since by (vi) (see also [4, p. 272]) / satisfies Jxy + Jx + Jy = 0, from (10) it

follows that F satisfies the "telegrapher's" equation: Ftt = Fxx — 2F/ as is proved in [3]
for a more general F.

Acknowledgments. This note started as a simplified model for a problem in con-
ductivity communicated to me by P. C. T. van der Laan. I am indebted to J. Boersma
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for identifying a more complicated expression for P(Nx^Ny)—involving an integral of
/!—as J(x,y}, and for references [3] and [6]. My thanks are due to W. K. M. Keule-
mans for calculating values of J(x,y} on a computer.
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IN A RANDOM WALK THE NUMBER OF "UNIQUE EXPERIENCES" IS
TWO ON THE AVERAGE*

DAVID NEWMANt

Abstract. For any simple random walk of length n > 0 we consider the number, U, of places which are
reached once and only once. The remarkable fact, which we alluded to in our title, is that the expected value of
U, call it £„, is always equal to 2, independent ofn.

For any simple random walk of length n > 0 we consider the number, U, of places
which are reached once and only once. The remarkable fact, which we alluded to in our
title, is that the expected value of U, call it Ea, is always equal to 2, independent ofn.

As far as we know, all the proofs of this result require some heavy machinery such as
generating functions or binomial coefficient identities, or calculations with the so-called
Catalan numbers. Our purpose, in this note, is to give an elementary proof.

To begin with, we note that E\ is obviously equal to 2 so that our result amounts to
(I) £ n + 1=£Jbrn>0.
Consider a walk, W, of length n + 1 and think of it as a first step followed by a walk,

W, of length n. Except possibly the initial point of W, the uniquely visited points of Wand
W are the same. If W never returns to its initial point then this point is a unique
experience which is never encountered in W\ and we have U(W) = U(W') + 1. If W
returns precisely once, then its initial point is not a unique experience in W, but is one in
W',-dnd we have (/(HO = U(W) - 1. Otherwise (if W7 returns more than once) the initial
point is not unique in WOT W' and we have U(W) = U(W').

Thus (I) is an immediate consequence of the following result:
(II) For n > 1 the number of walks which never "return" is equal to the number of

walks which "return"precisely once.
Proof. No formulas! We set up a 1-1 correspondence between these two types of

walks. Consider the operators A and B as follows:
For any walk W which never returns, locate the last time k < n where we are 1 unit

*Received by the editors August 4, 1983, and in revised form November 25, 1983.
fAmerican Telephone and Telegraph Corporation, 550 Madison Avenue, New York, New York.
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from the origin (k exists since the first step takes us 1 unit from the origin and since 1 <
n). At step k + 1, Wis 2 units from the origin, since we know W never returns. If this is
the last time walk ^is 2 units from the origin, define A(W] as the walk which takes the
very same steps as W up to k and reverses all the steps of H/past k.

Clearly A (W} is a walk which returns precisely once.
If step k + 1 is not the last time walk W\s 2 units from the origin, locate the last time

w, k + 1 < m ^ n where W is 2 units from the origin, and the next to last time /, k + 1 S /
< m where H/is 2 units from the origin. We now break H7into 3 segments:

S\—step / + 1 through step w,
S2—step 1 through step /,
S3—step m + 1 through step n (if m < «, otherwise omit).

Define A ( W ] as the walk composed of segment S\ followed by segment S2 followed by
segment S3 (if 5*3 exists).

A(W) returns precisely once, at the end of segment 51!, since segments S2 and 5*3
never return to their respective in i t ia l points, and all 3 segments set off in the same
direction.

Next, let Wbea. walk which returns precisely once, say at theyth step. If j = n - 1 or
j = n or if the (j + l)st step in HKis in the same direction as theyth step, define B(W} as
the walk which takes the same steps as IVup toy - 1 and reverses all the steps after that.

If, alternatively, Stakes 2 or more steps after theyth step in the opposite direction of
theyth step, locate the last time kj + 2 ^ k s n where Wis 2 units from the origin.

As before, define 3 segments:
S\—step 1 through stepy,
S2—stepy + 1 through step k,
S3—step k + 1 through step n (if k < «, otherwise omit).
Define B( W} as the walk composed of segment S2 followed by segment S1 followed

by segment S3 (if S3 exists).
B(W) is a walk which never returns. (Observe that in the second case, segments S\,

S2, and S3 all stay on the same side of their respective initial points, and segment 52, the
first piece, terminates 2 units away from the origin.)

To conclude the proof, note that A and B are inverse operations, so we have the
desired 1-1 correspondence.

A Coin Tossing Problem

Problem 77-11, by DANNY NEWMAN (Stanford University).

If one tosses a fair coin until a head first appears, then the probability that this
event occurs on an even numbered toss is exactly 3. For this procedure, the expected
number of tosses equals 2. Can one design a procedure, using a fair coin, to give a
success probability of \ but have the expected number of tosses less than 2?

Solution by R. D. FOLEY (Virginia Polytechnic Institute).
Let N be a random variable which represents the number of coin tosses. If there

exists a finite number n such that

(i.e., we know for certain we make only a finite number of tosses), then the probability
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of success is i2~", where i is the number of successful sequences of n coin tosses.
However /2~n does not equal 3 for any integers I and n. Hence, we know that for any n
there exists at least one sequence of n heads and tails in which we would not have
stopped. Thus for all n,

Now,

Thus it is impossible to develop a procedure using a fair coin to give a success
probability of 3 but have the expected number of tosses less than 2.

Solution by J. C. BUTCHER (University of Auckland, Auckland, New Zealand).
Let p be given in [0,1]; then amongst all procedures based on tossing of fair coins

which result in a probability of success equal to p, we define N(p) as the infimum of
the expected number of tosses. We will show that N(p) = 2 unless p = 0 or 1, in which
case N(p) — 0, or p = n/2m for m and n positive integers with n odd. In this last case
we will show that Af(p) = 2(1 -2~m). Furthermore, we show that an expected number
of tosses equal to AT(p) can be achieved. From our result, it follows that a success
probability of 3 cannot be achieved with a lower expected number of tosses than 2.

We first outline a procedure that gives the expected number we have quoted and
then prove it is optimal. The procedure is to construct a binary fraction whose rth digit
is 0 for a tail and 1 for a head on the rth toss. As soon as a digit differs from the binary
representation of p we terminate the procedure and deem it a success if the binary
fraction formed by the toss is less than the binary representation of p. In the case when
p = «/2m, we also terminate if the fraction found after m tosses equals p. Clearly, the
expected number of tosses required by this procedure is 2 in the general case or
2(1 - 2~m) in the case p = «/2m.

To prove that a smaller expected number is not possible, we use the fact that
N(p)^2 in all cases, and consider the subprocedures after a first toss when p ̂  0, | or
1. If we were to require further tosses if either a head or a tail was recorded in the first
toss, then the overall procedure would require at least two tosses. Hence, in the case
of one of the outcomes we must terminate the experiment with a success (if p > f) or a
failure (if p < |) and for the other outcome the subprocedure must have a probability
of success 2p — 1 (if p > 2) or 2p (if p < |). If this is carried out in the optimal way, we
see that

and iterated use of this gives the required result.
Comment by M. R. BROWN (Yale University).

There is no better procedure, in a suitable "decision tree" model. This is an
immediate consequence of Theorem 2.1 of D. E. Knuth and A. C. Yao, The complex-
ity ofnonuniform random number generation, Algorithms and Complexity, J. F. Traub,
ed., Academic Press, New York, 1976, pp. 357-428.
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Expected Number of Stops for an Elevator

Problem 72-20, by D. J. NEWMAN (Temple University).

P persons enter an elevator at the ground floor. If there are N floors above
the ground floor and if the probability of each person getting out on any floor is
the same, determine the expected number of stops until the elevator is emptied.

Solution by PETER BRYANT and PATRICK E. O'NEIL (IBM Cambridge
Scientific Center).

Define the random variable xt to have the value 1 if the ith floor is a stop and
0 otherwise. Note that E(xt) = P(X; = 1). The probability that no one stops at
floor i, F(XJ = 0), is the probability that F persons acting independently make a
choice other than floor i, each with probability (1 - l/N). Thus

Obviously,

Now the expected number of stops is given by

A few remarks are in order. Note that the solution N[l — (1 - l/N)p] is
asymptotic to JV[1 — exp( —/4)] if P/N tends to a limit A as N tends to infinity.
Second, since the argument depends only on the independence of each individual
in the elevator, the result may be generalized. Assume that the probability of per-
son k stopping at floor i is pik, i = 1, • • • , N, k = 1, • • • , P. Then the expected
number of stops is given by

If Pik = PC ' = 1> ' ' ' > N, k = 1, • • • , P, then the expected number of elevator
stops is

Using Jensen's inequality, it is easy to show that this expression is maximized
when Pf = l/N, i = 1, - • • , N. For the case where there is no restriction on pik,
a simple argument shows that the maximum expected number of stops is equal
to min(A r , P).

Solution by F. W. STEUTEL (Technische Hogeschool Twente, Enschede, the
Netherlands).

The description allows for several models. We assume the following: the F
supposedly indistinguishable persons entering the elevator at the ground floor
are labeled x t , x2 , • • • , xp, indicating the number of the floor at which they will
get out. All possible combinations are equally likely. This model is equivalent to
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the distribution of P indistinguishable balls over N cells (cf. W. Feller, An Intro-
duction to Probability Theory and its Applications, vol. 1, John Wiley, New York,

1968, p. 38). The number of distributions equal:

Denoting by K the number of floors where people leave the elevator, we have
P(K = k) = prob (all balls are distributed over k cells, none of which are empty).
Hence

where M = min (N, P). We therefore have

It follows that

Higher moments can be obtained in the same way. Other occupancy models can
be treated similarly.

Editorial note. As several of the solvers pointed out, the combinatorial part
of this problem is simply a version of the classical occupancy problem. The
elements of the sample space are distributions of P elevator passengers among N
exit floors. If the P passengers are considered to be distinguishable, the sample
space contains Np points, and in the equally likely model, the expected number of
elevator stops is N[l — (1 — 1/N)P]. If the passengers are considered to be in-

distinguishable, the sample space contains points, and in the

equauy iiKeiy moaei, me expected numoer 01 elevator siops is ivr/(n + r — i j .
One solver, S. H. Saperstone, considered both cases. Several solvers discussed
the probability distribution for the number of stops and/or higher moments of
the distribution. Other solvers pointed out that these results are available in stan-
dard references [1, p. 101], [2, Chap. 5]. Several solvers obtained the expected
value for the floor on which the elevator is emptied. For the distinguishable case,
the expected value of the terminal floor is N - ^r,1 (k/Nf, and for the indis-
tinguishable case, the result is (NP + 1)/(P + 1).

B. A. Powell has considered more realistic models of the elevator problem in
[3]. In a forthcoming book, An Elementary Description of the Combinatorial Basis
of Thermodynamics, T. A. Ledwell uses the elevator problem as an example to
develop the techniques needed in statistical thermodynamics. In particular, he
discusses in detail the "thermodynamic limit" of large P and N.

F. C. Roesler (Imperial Chemical Industries Limited) points out that
Schrodinger considered the classical occupancy problem (distinguishable case) in
the analysis of experimental data from cosmic ray counters [4]. Schrodinger asks
the following question. If P cosmic rays bombard an assembly of N cosmic ray



STOCHASTIC MODELS 279

counters, what is the probability that exactly k of the counters go off? The problem
considered by Schrodinger is especially interesting, since in this context special
importance is given to the inverse problem of estimating P given the observed
value of k. Roesler phrases the inverse problem for the elevator in the following
way. "Having observed from the indicator lights that the elevator has stopped k
times, what is the best guess for the number of passengers who entered on the
ground floor?" [C.C.R.]
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A Parking Problem

Problem 60-11, by M. S. KLAMKIN (University of Alberta), D. J. NEWMAN (Temple University) AND
L. SHEPP (University of California, Berkeley).

Let E(x) denote the expected number of cars of length 1 which can be parked
on a block of length x if cars park randomly (with a uniform distribution in the
available space).

Show that E(x) ~ ex and determine the constant c.
Solution by ALAN G. KONHEIM (I.B.M.) and LEOPOLD FLATTO (Reeves

Instrumentation Corp.).
We first show that E ( x ) satisfies the integral equation

The probability that the rear end of the first car lies in the interval (t, t + dt)
is l/(x — 1) dt (for 0 ^ t 5= x — 1). The interval [0, x] is then decomposed
into the two intervals [0, t] and [/ + 1, .T] in which the expected numbers of cars
are E(i) and E(x — 1 — t ) , respectively. Integrating t over [0, x — 1], we
obtain (1 )

Multiplying (1) by (x — 1) and differentiating, we obtain

then the Laplace transform satisfies the differential equation

which has as general solution



280 KLAMKIN ET AL.

Since E(i) = 0, 0 ^ t < 1 and E(t) g t (1 g t < °°) it follows that F(s) <
(2/s)e~! (s real and greater than 1), so that K = 0. Therefore,

which gives upon several changes of variables

From (7), we see that

where

Using a well known Tauberian theorem (Widder, The Laplace Transform, p. 192),
we have

and a standard argument shows

Also solved by the proposers.

Editorial Note:

This problem was obtained third-hand by the proposers and attempts were
made to track down the origin of the problem. These efforts were unsuccessful
until after the problem was published. Subsequently, H. Robbins, Stanford Uni-
versity, had informed me that he had gotten the problem from C. Derman and
M. Klein of Columbia University in 1957 and that in 1958 he had proven jointly
with A. Dvoretzky that

plus other results like asymptotic normality of x, etc. They had intended to pub-
lish their results but did not when they found that A. Renyi had published a
paper proving (8) in 1958, i.e., "On a One-Dimensioned Problem Concerning
Random Place Filling," Mag. Tud. Akad. Kut. Mat. Int&et. Kozlemenyei,
pp. 109-127. Also, (8) is proven by P. Ney in his Ph.D. thesis at Columbia.

A reference to the Renyi paper was also sent in by T. Dalenius (University of
California, Berkeley).

An abstract of the Renyi paper was sent in anonymously from the National
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Bureau of Standards. The abstract appears in the International Journal of Ab-
stracts: Statistical Theory and Method, Vol. I, No. 1, July 1959, Abstract No. 18.
According to the abstract, there is a remark due to N. G. DeBruijn in the Renyi
paper stating that a practical application of the Renyi result is in the parking
problem that was proposed here. In addition, the constant c has been evaluated
to be 0.748.

An Unfriendly Seating Arrangement

Problem 62-3, by DAVE FREEDMAN (University of California, Berkeley)
AND LARRY SHEPP (Bell Telephone Laboratories).

There are n seats in a row at a luncheonette and people sit down one at a
time at random. They are unfriendly and so never sit next to one another (no
moving over). What is the expected number of persons to sit down?

Solution by HENKY D. FRIEDMAN (Sylvania Applied Research Laboratory).
Let En be the desired expected number and number the seats consecutively

from the left. The first person sits down in the ith seat, i — 1,2, • • • , « , leaving
i — 2 and n — i — 1 seats (interpret as zero if negative) to his left and right,
respectively, available to the unfriendly second person. This permits us to write
recursively, for fixed i, En = 1 + 7?,_2 + .Z?n_,-_i. Taking an average over all
i, we obtain

It now follows irom (1) that the generating function tor hn, f (x) =
X)»=i Enx

n, satisfies the differential equation

with -

with the initial condition F(0) = 0. Whence,

By expanding (2) into a power series in x, we find that

For numerical calculations, we rewrite (3) into

where Si is the summand of (3). It now follows that — XX» Si lies between
0 and ( — 2)n+1/(?i + 2)! and may be taken as an error term which is negligible for
large n. Then

DAVID ROTH MAN (Harvard University) considered the more general problem
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where m seats are vacated on each side of a seated person and establishes a
recurrence relation for the expected number E^m(n) of persons seated. He ob-
tains the same results as before for m = 1 and gives the asymptotic expression

where

For m = 0 and m = 1,

and this is also a good approximation for m 3: 2. By letting m —> oo and normaliz-
ing one obtains the solution to the Parking Problem (Problem 60-11, July 1962,
pp. 257-258). The latter problem which is the continuous version of the problem
here is to find the expected number, E(x),oi cars of length 1 which can be parked
on a block of length x if cars park randomly (with a uniform distribution in the
available space). Asymptotically, E (x) ~ ex where

The approximation for c here is

J. K. MACKENZIE (RIAS) has solved this problem and the generalization given
by Rothman above in his paper Sequential Filling of a Line by Intervals Placed at
Random and its Application to Linear Adsorption, Jour, of Chem. Physics, Vol.
37, Aug., 1962, pp. 723-728. In this paper he notes that the case m = 1 has been
considered by E. S. Page, J. Roy. Statist. Soc., B21, 364 (1959) and F. Downton,
J. Roy Statist. Soc., B23, 207 (1961). The related problem where unit intervals
are placed not discretely but continuously on a line has been considered by A.
R6nyi, Magyar Tudomanyos Akad. Mat. Kutato Int. Kozleme'nyei 3, 109
(1958) (see Math. Rev. 21, 577 (1960). The related problem where all possible
nonoverlapping configurations of intervals are assumed equally likely has beea
discussed by J. L. Jackson and E. W. Montroll, J. Chem. Phys. 28, 1101 (1958)
for the case in = 1 and by H. S. Green and R. Leipnik, Revs. Modern Phys.
32, 129 (1960) for the cases m = 1 and m = f. Jackson and Montroll also give
some approximations to the two-dimensional problem.

On a Switching Circuit

Problem 60-8, by HERBERT A. COHEN (Space Instrumentation Division, Acton Laboratories).

Each of n switches connected in series are activated by clocks set to go off
at a fixed time. The clocks, however, are imperfect in that they are in error given
by a normal distribution with mean 0 and standard deviation 1. What is the
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standard deviation for the distribution of all switches being activated?
In particular, how does it behave asymptotically for large n?

Solution by A. J. BOSCH (Technological University, Eindhoven, the Nether-
lands) .

The time that clock i goes off (later than the fixed time) is t, (j = 1, • • • , n)
with/(t) ~ N(0,1). All switches have been activated if and only if the "latest" has
been activated. Let t = max(f 1 , • • • , t n ) , G(f0) = P(t < t0) = F"(t0) (all clocks
are independent), hence g(t) = nF"~ HO/W-

The variance a* - n J -ooU ~ jun)2F<"~1)(t)/(f)£/t. There is no explicit formula
for it, but there are many tables: D. Teichroew, Tables of expected values of order
statistics and products of order statistics for samples of size twenty and less from the
normal distribution, Ann. Math. Statist., 27 (1956), pp. 410-426.

For the asymptotic distribution, see references in H. A. David, Order Statistics,
John Wiley, New York, 1970, and in E. J. Gumbel, Statistics of Extremes, Columbia
Univ. Press, New York, 1960.
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h1.1 Sports

ON MAXIMIZING THE PROBABILITY OF JUMPING
OVER A DITCH*

SHAUL P. LADANYt AND JAGBIR SINGHt

Abstract. A model is considered for a man running towards a ditch and attempting to jump over
it. We investigate the take-off point he should aim for in order to maximize his chances of jumping
across the ditch. It is shown that aiming as close as possible to the edge is not necessarily in his best
interest. The optimal policy for this objective is then compared with the case when the objective is to
maximize the expected distance jumped from the edge of the ditch. Finally, conditions for which the
two optimal policies coincide are pinpointed.

1. Introduction. A man running towards a ditch in order to jump over it has
to decide on the point at which he will aim for his take-off. If he aims at the near
edge of the obstacle, he can "fall short" of the edge or "overshoot" it. If he falls
short, the effective length of the jump over the obstacle will be reduced by the
amount of his "undershooting". Thus, he might fall into the ditch instead of
landing on the far edge. However, if he overshoots the edge, he also falls into the
ditch without accomplishing the crossing.

The man may also consider aiming for a take-off line short of the edge. His
chances of falling into the ditch at the near edge will decrease; but on the other
hand, the effective length of the obstacle is increased as well. Therefore, his
chances of falling into the ditch before reaching the far edge will increase. Thus,
the problem is to find the optimal aiming line in front of the edge in order to
maximize the probability of jumping over an obstacle of a certain width. There are
several practical applications of the problem; for example, in cross-country
competitions, commando crossing of creeks, and in broad-jump competition
where the incentive is to break a record (see Brearley [2]).

2. The model. Let us assume that the real jumping distance, X, which is the
shortest horizontal distance between the tip of the forward shoe at take-off and
the aftermost contour of the rear leg's footprint after landing, is a continuous
random variable. Further, we express the accuracy of take-off as the distance, Y,
between the tip of the forward shoe at take-off and the take-off line aimed for.
Thus, Y is positive when "overshooting" and negative when "falling short" of the
take-off mark. We assume that X and Y are independently and normally
distributed with means /A* and /zy and variances crl and cr*, respectively.

When a jumper aims for a take-off point that is a distance, a, before the near
edge of the ditch, which is of width L, the probability of successfully jumping over

* Received by the editors April 30, 1975, and in revised form April 22, 1977.
t Department of Industrial Engineering and Management, Ben-Gurion University of the Negev,

Beer-Sheva, Israel.
t Department of Statistics, School of Business Administration, Temple University, Philadelphia,

Pennsylvania 19122.
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The problem is to choose a, so that (1) is maximized.

the ditch is
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In order to evaluate (1) using charts of bivariate normal distributions, it is
necessary to rewrite it in terms of standardized normal variables. To do this, let

and

Then,

F(a) = P(U^h(a),V£k(a)).

Notice that the correlation coefficient between the standardized normal variables
U and V is

It is easy to see that F(a) can be rewritten as:

F(d) = P(U^h(a))-P(U>h(a\ V^k(a))

= 3>(-h)-L(h,k,p}

where 3>(/i) is the standard normal cumulative distribution function and
L(h,k,p) = P(U^h, V^ k) is the bivariate normal probability integral. It can be
shown (see [1]) that F(a) can be expressed as:

where

The values of L(h, 0, • ) and L(fc, 0, • ) can be read from graphs of h versus p
in [1] with constant contour lines such that L(h,0, p) = 0.01, • • • , 0.50. Thus,
using the graphs and (2), F(a) can be evaluated numerically for various values
of a.

3. Numerical example. Experiments were performed with a cross-country
runner over a period of ten training sessions. During this period, the athlete made
no effort to improve his jumping or aiming ability. Between peak training sessions,
his running quality was at a relatively low level and insufficient for improving his
running or (indirectly) his jumping performance. He was requested to jump
aiming for various take-off lines, and the values of X and Y were collected.

The athlete in the experiment was an ex-long jumper and therefore, his
jumping performances were of high standards. The normal distribution was fitted
to the observed data for the distribution of X as well as for Y (both in
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FIG. 1. Fitted and observed frequency distributions of the length of jumps Xand aiming accuracy Y.

centimeters), and the results are:

X ~ Af(701.23,20.442), r~JV(0.01,7.502).

The fitted and the observed frequency distributions are shown in Fig. 1. In both
cases, the chi-square test accepts the null hypothesis at the 0.05 level of signifi-
cance. The assumption of independence of X and Y is validated since the
correlation coefficient between them is not significantly different from zero at the
0.05 level of significance.

The values of F(a) in (2) were calculated for various values of a and L for the
jumping and the aiming characteristics of the given athlete. The results are
illustrated in Fig. 2. Several conclusions become evident. First, and not surpris-
ingly, the probability of crossing the obstacle is a decreasing function of its length
L. However, the probability of crossing is more sensitive to changes in the values
of L around 700 centimeters (approximately the expected jumping distance)
compared to those changes in L away from 700 centimeters. Second, the
probability of crossing the obstacle is very sensitive to the value of a; the
sensitivity is higher for the values of a below the optimal a than for values above
it. Third, the absolute change in F(a) due to one unit change in a from its optimal
level increases as L decreases. Fourth, the optimal value of a, a0, is very small for
large values of L and it increases with decreasing L. This relationship is illustrated
in Fig. 3. (Note that the curve is smoothed and hand-fitted and therefore it does
not necessarily pass through the calculated points). For L = 740, OQ is zero; i.e.,
the runner should aim at the edge of the ditch for his take-off. At the other
extreme, for L ̂  600, a0 is 30; and since it is about four standard deviations of the
aiming ability from the edge of the ditch, it provides the probability of approxi-
mately one of not falling in the ditch at the near edge.
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FlG. 2. The probability of crossing a ditch, F(a), as a function of the location of the aiming tine, a, for
various ditch lengths L (a and L in cm).
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FIG. 3. Location of the optimal aiming line, a0, as a function of the ditch length L (in cm.).

4. Maximization of expected distance. Suppose the athlete selects his take-
off aiming line with the objective of maximizing the expected distance D jumped
beyond the front edge of the ditch. This distance is

If the probability density functions of X and Y are f(x) and g(y), respectively,
then the expected distance E(D) is:

The approximation sign is due to the fact that the integration with respect to x
should start from zero. However, since the mean of X is many standard deviations
away from zero, for every distribution, it provides essentially the same numerical
value as starting the integration at x = —oo. Thus,

where <f>(y) is the density of the standard normal distribution and a' = (a - ny)/cry.
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Hence,

The optimal value of a or equivalently of a' is obtained when E(D) is
maximized. To this end set

equal to zero. Since da'/da = l/cry, it follows that

Equation (3) provides a' maximizing E(D), since it can be shown that
d2E(D)/da2<Q. The graphic solution of (3) for any value of cry/fjLx is shown in
Fig. 4, providing a solution of a' = 2.69 for the pertinent ratio of <7y//ux =
7.50/701.23 = 0.01069. Thus, the optimum policy, for the given athlete to
maximize the expected length of jump, is to aim at a line which is given by

a = a'a-y + /uy = 2.69(7.50)4-0.01 = 20.18 cm

in front of the edge. Comparison of this result, with the recommended values of a
when the maximization of the probability to cross the ditch is the objective (see
Fig. 2) illustrates clearly that in most cases to use the a which maximized E(D)
would reduce significantly the probability of crossing the ditch. Only when the

FIG. 4. Optimal value of a0 as a function of a J/j,x.
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width of the ditch is significantly less than the average jumping ability of the
athlete, 640,620, or 600 centimeters (which are approximately 3,4, or 5 standard
deviations below the mean, respectively), do the practical implications of both
policies coincide.

5. Concluding remarks. The optimal distance between the edge of a ditch
and the arbitary take-off line that a person should select to aim for in order to
maximize his probability of crossing it depends on the jumping and the aiming
ability as well as on the width of the ditch. It is clear that for jumping over a ditch
much narrower than his jumping ability, the athlete should aim much ahead of it;
and that for crossing an obstacle considerably wider than his average jumping
ability he should aim at the edge of the ditch. However, for jumping over a
distance which is shorter than his average jumping ability by an amount of 1, 2, 3,
4, and 5 standard deviations of his jumping ability, the athlete is recommended to
aim at a line which is in front of the edge by, respectively, 1.3, 1.9, 2.5, and 4
standard deviations of his aiming ability. On the other hand, for jumping over a
distance which is exactly his average jumping ability, or 1, 2, or 3 standard
deviations (of jumping ability) above it, it is suggested that he aim at a distance
which is respectively 0.9, 0.3, 0 and 0 standard deviations of his aiming ability in
front of the edge. It has been further shown that a ditch crossing policy motivated
by the desire to leap the greatest expected distance is inconsistent with the desire
to maximize the probability to succeed in the crossing (except in the trivial cases
when the width of the ditch is considerably lower than the average jumping ability
of the person).

A few words of caution are appropriate concerning the accuracy of the
derived results. The usual error of reading the values from the graphs of the
bivariate normal distributions [1] is of the order of magnitude of 0.01, so that the
calculated values of the probabilities F(a) are subject to such an error of
approximation. This might not lead to the adoption of a different nonoptimal
aiming line, except in the unimportant cases where F(a) is practically insensitive
to changes in a. For example, for L = 700, F(a) was calculated to be 0.28555,
0.29812, 0.30036, 0.30280, and 0.29900 for a = 5, 6, 7, 8 and 9, respectively.
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probability that he wins any particular rally.

*Received by the editors October 7, 1983. This research was supported by the Office of Naval Research,
the Air Force Office of Scientific Research, the Army Research Office, and the National Science Foundation.

tDepartments of Mathematics and Mechanical Engineering, Stanford University, Stanford, California
94305.



SPORTS 293

To win a game of racquetball it is necessary to win 21 points, and to win a point it is
necessary to have the serve. If the loser has zero points at the end of the game, he is said to
be shut out. We seek the probability P that player A shuts out player B, assuming that A
has probability p of winning any particular rally.

Let P(ri) be the probability that A wins n points while B wins zero points with A
having the serve initially. Then P(ri) satisfies the recursion relation

P(n)^P(n- l )P(l) .

Repeated application of (1), or induction on «, yields

P(n) - [/>(!)]".

To find P(l), we note that A can win one point while B wins zero points in either of
two ways. Either A can win the first rally and thus win one point, or he can lose the first
rally and thus lose the serve but then win the second rally to regain the serve. After that he
is in the same condition he started from, and again he has the probability P(l) of winning
one point before B wins any. Thus P(\) satisfies the equation

P ( l ) -p + ( l -p ) /> />( ! ) .

Solving (3) yields

When A has the serve initially, then the probability that he shuts out B is just jP(21),
where P(n) is given by (5). However if the initial server is determined by the toss of a fair
coin or racquet, then A has probability >/2 of having the serve initially. If B has the serve, A
must win it and then win 21 points. Thus the probability P of a shutout is

Upon combining (5) and (6) we get the final result

The values of P for a few values of/? are:

p 1. .9 .85 .84 .842 .5
P \. .753 .534 .490 .500 .0001504

Thus the probability of a shutout is .5 when p = .842, which means that on the average A
wins 5.33 rallies for each one that B wins. For evenly matched players p = .5 and the
probability that A shuts out B is only .0001504 or one in 6649 games.

I want to thank Ralph Levine for having proposed this problem, and for his
comments on the results.

Now (2) and (4) give
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PROBABILITY OF WINNING A GAME OF RACQUETBALL*

DAVID J. MARCUS*

Abstract. The probability of a player winning a game of racquetball is calculated as a function of the
probability p of his winning a rally when he serves and the probability q of his winning a rally when his
opponent serves.

In Classroom Notes in the April 1984 issue, Keller calculated the probability of a
shutout in racquetball assuming that the probability of winning a rally is independent
of who serves. For those of you who have enough trouble just winning, let alone getting
a shutout, we calculate the probability that player A wins the game. Since a player
usually wins more rallies on his own serve, we only assume A has probability p of
winning a rally when he serves and probability q of winning a rally when B serves. To
win a game A must win 21 points, and to win a point it is necessary to have the serve.

Let PA(n) be the probability A wins the next n points assuming A has the serve.
The reasoning leading to equation (3) of Keller's note gives

and

Also from Keller's note,

Similarly,

Assume A serves first. For 0^_/'^21 and b = (b0,bl,- • -,b20), let P ( j \ b ) be the
probability A winsy points with B winning bt points between ,4's (j)th and ( /+l) th
points, / = 0,1,- • -J-l. Then with the convention P(0\b)=l, we have fory ;> 1 that

To see this suppose A has just won his (j— l)th point. For B to win bj_l¥=0 points he
must win the rally (probability = !—/>), then win bj_l points (probability = PB(bj_l)),
and then lose the next rally (probability = q). Then A can win his next point (probabil-
ity =^(1)).

Let n equal the sum of the bt (i.e. the number of points B wins) and let m equal the
number of 6, which are not zero. Then

'Received by the editors October 19,1984, and in final form April 22,1985.
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There are 21 choose m ways of choosing which />, are nonzero and for each choice there
are (n — 1) choose (m — 1) ways of placing the n points in the m boxes so each has at
least one point.

Hence the probability A wins is

The probability of A winning if B serves first is

l-Pr(l-q,l-p)

Therefore, if they flip a coin to decide who serves first, the probability of A winning the
game is

Table 1 gives some values. The top number is Pr and the bottom is Prcoin.

So for evenly matched players the serve is worth approximately two games out of
one hundred.

REFERENCE

J. B. KELLER, Probability of a shutout in racquetball, this Review, 26(1984), pp. 267-268.

POSTSCRIPT

L. C. Ford and C. L. Winter; and also J. Goldstein, independently, extended the Keller note in the same way.

Supplementary References
Sports

[1] R. M. ALEXANDER, "Optimum walking techniques for quadrupeds and bipeds,']. Zool. (London) (1980) pp. 97-117.
[2] , 'Walking and running," Amer. Sci. (1984) pp. 348-354.
[3] R. M. ALEXANDER AND A. S. JAYES, "Fourier Analysis of Forces exerted in walking and running,"]. Biomechanics

(1980) pp. 383-390.



296 SUPPLEMENTARY REFERENCES

[4] I. ALEXANDROV AND P. LUCHT, "Physics of sprinting," Amer. J. Phys. (1981) pp. 254-257.
[5] Animal Locomotion, Halsted, N.Y., 1977.
[6] S. J. BRAMS AND P. D. STRAFFIN, JR. , "Prisoner's dilemma and the professional sports draft," MAM (1979) pp. 80-88.
[7] P. J. BRANCAZIO, Sport Science, Physical IMWS and Optimum Performance, Simon and Schuster, N.Y., 1984.
[8] M. N. BREARLY, "The long jump miracle of Mexico City, MM (1972), 241-246.
[9] H. BRODY, "Physics of the tennis racket," Amer. J. Phys. (1979) pp. 482-487.

[10] , "Physics of the tennis racket 11: The 'sweet spot," Amer. 3. Phys. (1981) pp. 816-819.
[11] D. BURGHES AND M. O'CARROLL, "Mathematical models for weighttifting'BlMA (1980) pp. 155-159.
[12] S. CARLSON, How Man Moves, Heinemann, London, 1972.
[13] S. CHAPMAN, "Catching a baseball," Amer. J. Phys. (1968) pp. 868-870.
[14] E. COOK, Percentage Baseball, M.I.T. Press, Cambridge, 1966.
[15] E. COOK AND D. L. FINK, Percentage Baseball and the Computer, Waverly, N.Y., 1972.
[16] J. C. COOKE, "The boundary layer and 'seam'bowling "Math. Gaz. (1955) pp. 196-199.
[17] J. E. COUNSILMAN, The Science of Swimming, Prentice-Hall, N.J., 1968.
[18] C. B. DAISH, The Physics of Ball Games, English Universities Press, 1972.
[19] P. DAVIDOVITS, Physics in Biology and Medicine, Prentice-Hall, N.J., 1975.
[20] J. M. DAVIES, "Aerodynamics of golf balls,"]. Appl. Phys. (1949) pp. 821-828.
[21] J. E. DRUMMOND, "Why does a high jump cross bar fall off?" Math. Gaz. (1981) pp. 182-185.
[22] G. DYSON, The Mechanics of Athletics, University of London Press, 1977.
[23] H. Y. ELDER AND E. R. TRUEMAN, eds., Aspects of Animal Movement, Cambridge University Press, Cambridge,

1980.
[24] R. A. FREEZE, "An analysis of baseball hatting order by Monte Carlo simulation," Operations Research (1974) pp.

728-735.
[25] C. FROHLICH, "Aerodynamic drag crisis and its possible effect on the flight of baseballs," Amer. J. Phys. (1984)

pp. 325-334.
[26] , "Aerodynamic effects on discus flight," Amer. J. Phys. (1981) pp. 1125-1132.
[27] , "Do springboard divers violate angular momentum conservation?," Amer. J. Phys. (1979) pp. 583-592.
[28] , "Effect of wind and altitude on record performances in foot races, pole vault, and long jump," Amer. J.

Phys. (1985) pp. 726-730.
[29] , "The physics of somersaulting and twisting," Sci. Amer. (1980) pp. 154-164.
[30] D. GALE, "Optimal strategy for serving in tennis," MM (1971) pp. 197-199.
[31] D. F. GRIPPING, The Dynamics of Sports, Mohican Publ., Ohio, 1982.
[32] R. A. GROENEVELD AND G. MEEDEN, "Seven game series in sports,"MM (1975) pp. 187-192.
[33] C. R. HAINES, "Old curves in a new setting" Math. Gaz. (1977) pp. 262-266.
[34] C. H ALL AND C. SWARTZ, The effect of handicap stroke location on golfmatches'M^th. Modelling (1981) pp. 153-159.
[35] , The effect of handicap stroke location on best-ball golf scores,"Math. Modelling (1981) pp. 161-167.
[36] J. G. HAY, The Biomechanics of Sports Techniques, Prentice-Hall, N.J., 1985.
[37] J. KARNEHM, Understanding Billiards and Snooker, Pelham, 1976.
[38] P. KIRKPATRICK, "Batting the ball," Amer. J. Phys. (1963) pp. 606-613.
[39] J.B.KELLER, "Mechanical aspects of athletics "Proc. 7th U.S. Nat. Cong. Appl. Mech., Boulder, Co. (1975) pp.

22-26.
[40] , "Optimal velocity in a race'AMM (1974) pp. 474-480.
[41] , "A theory of competitive running,"Phys. Today (1973) pp. 42-47.
[42] S. P. LADANY, "Optimal starting height for pole-vaulting ,"Oper. Res. (1975) pp. 968-978.
[43] S. P. LADANY AND R. E. MACHOL, Optimal Strategies in Spans, North-Holland. Amsterdam, 1977.
[44] S. P. LADANY, J. W. HUMES AND G. P. SPHICAS, "The optimal aiming line,"Oper. Res. (1975) pp. 495-506.
[45] H. LIN, "Newtonian mechanics and the human body: Some estimates of performance,"Amer. J. Phys. (1978) pp. 15-18.
[46] G. R. LINDSAY, "Strategies in baseball," Oper. Res. (1963) pp. 477-501.
[47] B. B. LLOYD, The energetics of running: An analysis of world records," Advancement. Sci. (1966) pp. 515-530.
[48] R. E. MACHOL AND S. P. LADANY, eds., Management Science in Sports, North-Holland, Amsterdam, 1976.
[49] A. G. MACKIE, "A difficulty factor for pots at snooker," BIMA (1984) pp. 66-69.
[50] , "Mathematics in sport,"BIMA (1980) pp. 2-6.
[51] , The mathematics of snooker," BIMA (1982) pp. 82-88.
[52] F. J. MAILLARDET, "The swing phase of locomotion," Eng. Medicine (1977) pp. 67-75.
[53] J. K. R. MANNING, "Mathematics of duplicate bridge tournaments,"BIMA (1979) pp. 201-206.
[54] R. MARGARIA, Biomechanics and Energetics of Muscular Exercise, Oxford University Press, London, 1976.
[55] E. A. MARSHALL, "A dynamic model for the stride in human walking "Math. Modelling (1983) pp. 391-415.
[56] T. A. MCMAHON, Muscles, Reflexes, and Locomotion, Princeton University Press, Princeton, 1984.
[57] S. MOCHON AND T. A. McMAHON, "Ballistic walking: An improved model,"Math. Biosci. (1980) pp. 241-260.



SPORTS 297

[58] F. MOSTELLER, The world series competition,"}. Amer. Statist. Assoc. (1952) pp. 355-380.
[59] J. M. NEVIN AND P. J. JACKSON, "An interesting property of tennis rackets and dynamically similar rigid bodies,"

BIMA (1977) pp. 154-156.
[60] D. J. NEWMAN, "How to play baseball," AMM (1960) pp. 865-868.
[61] W. PAISH, Discus Throwing, British Amateur Athletic Board, London, 1976.
[62] T. J. PEDLEY, ed., Scale Effects in Animal Locomotion, Academic, London, 1977.
[63] S. M. POLLAK, "A model for evaluating golfhandicapping ,"Oper. Res. (1974) pp. 1040-1050.
[64] J. G. PURDY, "Computer analysis of champion athletic performance," Res. Quart. (1974) pp. 391-397.
[65] , "Least squares model for the running curve," Res. Quart. (1974) pp. 224-238.
[66] P. S. RIEGEL, "Athletic records and human endurance," Amer. Sci. (1981) pp. 285-290.
[67] H. W. RYDER, H. J. CARR AND P. HERGET, "Future performance in footracing,"Sci. Amer. (1976) pp. 109-118.
[68] F. J. SCHEID, "A least squares family of cubic curves with an application to golf handicapping "SIAM J. Appl. Math.

(1972) pp. 77-83.
[69] E. SCHRIER AND W. ALLMAN, eds., Newton at the Bat, Scribner, NY., 1984.
[70] M. STOB, "A supplement to 'A mathematician's guide to popular sports'," AMM (1984) pp. 277-282.
[71] J. STRAND, "Physics of long-distance running," Amer. J. Phys. (1985) pp. 371-373.
|72] T. TECH, "The ranking of incomplete tournaments: A mathematician's guide to popular sports," AMM (1983) pp.

246-266.
[73] M. S. TOWNSEND, Mathematics in Span, Horwood, Chichester, 1984.
[74] E. A. TROWBRIDGE ANOW. PAISH, "Mechanics of athletics,'BIMA (1981) pp. 144-146.
[75] K. WELLS ANDK. LUTTGEN, Kinesiology, Saunders, Philadelphia, 1976.
[76] F. R. WHITT AND D. G. WILSON, Bicycling Science, M.I.T. Press, Cambridge, 1982.
[77] M. WILLIAMS AND H. R. LISSNER, Biomechanics of Human Motion, Saunders, Philadelphia, 1962.
[78] S. T. WILLIAMS AND J. UNDERWOOD, Science of Hitting, Simon and Schuster, N.Y., 1982.



12. Miscellaneous

A LATTICE SUMMATION USING THE MEAN VALUE THEOREM FOR
HARMONIC FUNCTIONS*

PAUL K. MAZAIKAt

The equations for finding bulk properties of crystals are commonly solved by Fourier
series; however, the resulting solutions can be multiple sums with slow convergence.
Convergence may be improved using one of the theta function transformations on the
sum, but the analysis is detailed, and the resulting functions may not be readily available
on a computer. In this note, we give an example where a transformation based on the
mean value theorem for harmonic functions can be used to form a rapidly converging sum
of elementary functions.

Consider the following multiple sum arising in the solution for viscous flow past an
infinite three-dimensional periodic array of spheres (Hasimoto [1]):

where

n = H,i + «2j + «3k, «,, «2, n3 = 0, ±1, ±2, • •

are points in a three-dimensional unit lattice, n = |n|, and the summation is an infinite
triple sum over all points in the lattice (except n = 0). We wish to find the constant term in
the expansion of S\ (r) about r = 0, however, the series is singular at r = 0, and only
conditionally convergent for r / 0.

The Laplacian of £, (r) is given by

where 6(r) = d(x) 5(y) d(z) is the Dirac delta function in three dimensions, and we have
used Poisson's summation formula

Removal of the singularity at r = 0 and the constant term from the right-hand side makes
equation (2) homogeneous for |r | < 1. Hence, a harmonic function, T0(t), can be defined
by

since

'Received by the editors December 31, 1980, and in revised form May 1, 1983. This work was part of the
author's Ph.D. thesis in Applied Mathematics at the California Institute of Technology in 1974.
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Note that T0(0) is the regular part of 5, (r) at r = 0.
Harmonic functions satisfy the mean value theorem (Courant and Hilbert [2]):

Successive applications of this theorem yield new, faster converging, representations for
jTo(r), and we will denote them successively by T t ( r ) , 72(r), etc. Thus,

for points r such that a sphere of radius Rt centered at r does not enclose a nonzero lattice
point.

The series for S, must be uniformly convergent in order to be integrated term by
term, so we require that |r| -j- Rt to avoid the singularity at r + s = 0. Then, for the
integral involving S,,

and the sum now converges like « 3 instead of n 2. Applying the theorem to the other
terms of ro(r), we obtain the new representation

We have assumed that Rt > r| in the integral of the |r + s |~ ' term, otherwise the I//?,
term in (9) is replaced by 1 jr. In particular, if /?, = 1/2, then (9) is valid for | r | < 1/2.

After N iterations of the mean value theorem, the representation becomes

where there is now rapid algebraic convergence of the sum. Each successive representa-
tion at a point r uses the previous representation in a sphere about r, so the region of
validity of TA,(r) decreases as N increases. For example, if /?, = 2 ~ J f o r j = l , 2 , - • • , N,
thenT A , ( r ) i svaI idfor | r |<2- ' v .

To evaluate 7"v(0), we neglect the terms in the sum for which n is larger than an
upper bound, u. The magnitude of the neglected sum is bounded by the volume integral

Choosing Rj = 2 ' (for y = l , 2 , • • • , N), N = 4, and u = 20, the maximum error is
about 10~4, and we numerically find that 7^(0) = -2.8373.
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The above calculation sums about 4200 terms after using the eightfold symmetry of
the triple sum at r = 0. This is beyond hand calculation, but easily evaluated with a small
computer program involving only elementary functions. In contrast, Hasimoto uses a
generalized theta transformation to convert S}(T) into a three-dimensional sum of
incomplete F-functions, and expands each F-function in the neighborhood of zero. The
resulting exponential convergence is very desirable for hand calculations, but the
incomplete F-function is not a commonly stored computer function. Thus, the summation
using the mean value theorem transformation is easier to implement when a computer is
available.

For further information about lattice sums and other techniques for summation, we
refer the reader to the articles by Zucker [3], and Chaba and Pathria [4], and the
references therein.
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SURFACE INTEGRAL OF ITS MEAN CURVATURE VECTOR*

DENIS BLACKMORE* AND LU TING*

Abstract. We present two methods for proving that the integral of the mean curvature vector over a
closed surface vanishes.

Key words, principal curvature, mean curvature, Laplace formula, diffeomorphism, differential forms,
pullback, Stokes' theorem

AMS (MOS) 1980 subject classifications. 53A05, 53A07, 76V05

Introduction. In the study of two-phase problems, e.g., air bubbles in water, it is
well known that the resultant force acting on a segment of the interface has to vanish
since an interface has no inertia. Therefore, we have

where alt p+~p~ and N denote respectively the surface tension coefficient, the pres-
sure difference across the interface and its unit normal vector pointing towards the side
with pressure p+. For an infinitesimal surface element, (1) yields the Laplace's formula
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where iq and K 2 are the principal curvatures of the interface. For a closed interface S,
(1) leads to

for any imposed p + -pp distribution. This is consistent with physics in that the
resultant force acting on a closed interface of zero inertia has to vanish.

Using (2), we then get

where M denotes the mean curvature. The obvious question is whether (4) is valid only
for a special class of surfaces? In that case, it would imply that a closed interface has to
belong to that class. Instead, we find that (4) is valid for every closed surface for which
the coefficients of the first and second fundamental forms are continuous.

THEOREM. Let S be a closed ( — compact and boundaryless), orientable surface of
class C2 with mean curvature M and unit outer normal N. Then (4) holds.

We shall prove this theorem by two methods. In the first method, we shall prove
that for a surface area element, the surface integral of 2A/N is equal to the contour
integral -^NxrfX. In essence, we are rederiving the Laplace's formula while demon-
strating the difference between the curvature vector of a surface curve and its normal
curvature vector. In the second method, we use the general formulas for the mean
curvature and surface normal and then show that MN can be put in a divergence form
to which Stokes' theorem is applied.

Method I. Let us consider the area element of the surface X(H,v ) bounded by
constant u, u + du, v and v + du lines. If the parametric lines are lines of curvature [1],
the corresponding first and second fundamental forms are

Let f, and t2 denote respectively the unit tangent vectors along the lines of constant v
and M, with t 1 X t 2 = N. Let s^ and s2 be the arc length along the constant v and u
lines, we have dsl = \fE du and ds2 = ifG dv. The line integral in (1) becomes

We note that along a constant v line,

where K1 is the curvature vector to the curve and has two components normal and
tangential to the surface, respectively. The normal and tangent curvatures are

Similarly we have

and
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with

The first term on the right side of (7) can be written as

The last term in the bracket represents the stretching of the arc length from constant u
to u + du and is equal to — (Kg)2t1. This is consistent with the well-known result that «g

is the curvature of the projection of the curve on the tangent plane. It is clear that the
contribution of the stretching of the arc length in the first term on the right side of (7)
cancels the contribution of the tangent curvature vector in the second term and vice
versa. Consequently, (7) becomes

We then recover the Laplace formula from (1). If the surface A is covered by two
families of curvature lines, we have

If A has a finite number of umbilical points, (8) remains valid since their measure
is zero. Equation (8) is true also when on A there is a line segment L of umbilical
points. Since the line is of measure zero, there is no contribution to the surface integral
on the left side of (8). On the other hand, the line integral around a cut on L vanishes
due to mutual cancellation and therefore does not contribute to the right side of (8)
either. If a portion of the surface lies in a plane, (8) is still valid since the contributions
of the planar portion to both sides of (8) are zero. Equation (8) holds if the surface has
a spherical portion, as the vector identity

for a C2 surface 2 can be used to show that the spherical contributions to both sides of
(8) are identical. When A is a closed surface S, we have (4). If in addition the surface is
C3, the preceding line of argument can actually be generalized to include every closed
surface.

Using a slight modification of this approach, we can show the validity of (8)
employing orthogonal lines instead of curvature lines. For a closed surface S we have
again (4), since it can be shown that every closed C2 surface can be covered by an
orthogonal net if finitely many exceptional points are excluded.

Method II. It is convenient to introduce some standard notation. Let X = (x,y,z)
be the position vector in K3. Given any point p e S there exist an open neighborhood
V of p in R3, an open neighborhood U of the origin in the uv plane and a C2

diffeomorphism ^: U^SnV such that i|/(0,0)=/>. We define X(u,v)—\jj(u,v) and
call X = X(u,u) a local parametrization of S. Since ^ is a diffeomorphism,

and by selecting u and v corresponding to the appropriate orientation of S we obtain

and
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in local M,y-coordinates. With this notation, the components of the vector-valued form
MNdA (with respect to the standard orthonormal basis i, j, k in R 3 ) are

Let these 2-forms be denoted by ul, u>2 and <o3, respectively. The proof of (4) follows if
we can show each of these 2-forms is exact: i.e., there are 1-formsO lt f>2

 and #3 defined
on 5* such that

For then by Stokes' theorem (see [2])

We claim that the required 1-forms are as follows: 6l = (N, k) dy — (N,j) dz, 62 =
- (N, k> dx + <N, i> dz and0 3 = (N, j) dx - <N, i> dy, where < • , •) denotes the standard
inner (dot) product in R3. To be more precise, we should actually use the pullback to S
of each of these forms, but our abuse of notation is harmless. It is clear that these forms
are globally Cl on S. As all the verifications are essentially the same, it will suffice to
prove d03 = u3. This is accomplished most easily by working locally as follows: We may
assume (after an isomorphic transformation of coordinates if necessary) that

on U. Hence

It is easily verified (see [1, 3]) that M has the following form in local coordinates:

By virtue of (9), we may assume that the local parametrization is

\(x,y) = (x,y,h(x,y)),

where h is of class C2. In terms of these coordinates it is easy (see [3]) to show that

and
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We observe now that in Ary-coordinates

This completes the proof.
In conclusion, we note that this result can be generalized as follows:
Let S be a closed C2 hypersurface of Euclidean n-space with normal vector N and

curvature 2-form B. Then
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A SIMPLE PROOF THAT THE WORLD
IS THREE-DIMENSIONAL*

TOM MORLEY*

Abstract. The classical Huygens' principle implies that distortionless wave propagation is possible only in
odd dimensions. A little known clarifications of this principle, due to Duffin and Courant, states that radially
symmetric wave propagation is possible only in dimensions one and three. This paper presents an elementary
proof of this result.

1. Introduction. The title is, of course, a fraud. We prove nothing of the sort.
Instead we show that radially symmetric wave propagation is possible only in dimen-
sions one and three.

In 1864 James Clark Maxwell discovered the fundamental laws of electromag-
netism; see [5]. Maxwell's theory predicted the existence of electromagnetic radiation,
i.e., electromagnetic waves. It was not until 1888 that Heinrich Rudolf Hertz discovered
radio waves in the laboratory. (By the way, Hertz was a student of Helmholtz.) There
can be little doubt that this discovery and subsequent technological advances have had
a profound effect on modern life. What would the world be like without radio,
television, and global instantaneous (or nearly so) communication? It is the purpose of
this note to give a short elementary proof that this state of affairs can exist only in three
dimensions. In particular:

THEOREM. Radially symmetric distortionless wave propagation is possible only in

'Received by the editors June 26,1984, and in revised form August 30,1984.
tSchool of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332.
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dimensions one and three. However, in one dimension there is no attenuation.
For precise definitions of these terms see §2.
This theorem was proved by R. J. Duffin in 1952 [3], and is mentioned by R.

Courant in [2]. (It is not known whether Courant knew of Duffin's work.) Neither
Courant nor Duffin ever published a proof. The present proof, however, is different
and considerably more elementary than Duffin's original proof, and is suitable for
presentation in the typical junior-senior level ODE-PDE course.

2. Radial wave propagation. Consider the /z-dimensional wave equation

A radially symmetric wave is a solution of (W) that depends only on t and

Setting v(r,t)= u ( x , t ) we obtain, by the chain rule, the «-dimensional radially symmet-
ric wave equation

(RW)

DEFINITION. Distortionless radially symmetric wave propagation is possible if
there are functions a(r)>0, 8(/)>0, 5(0) = 0, and a(l) = l such that given any "rea-
sonable" /, the function

is a solution of (RW). The function a(-) is termed the attenuation, and the function
8( •) is the delay. If a is identically 1 then there is no attenuation.

It should be noted that "reasonable" can be quite unrestrictive; the class of
polynomials or trigonometric polynomials will suffice.

Proof of theorem. If distortionless radially symmetric wave propagation is possible,
then given any reasonable/ the function v ( r , t ) = a(r)f(t-8(r)) is a solution of (RW).
Computing partial derivatives:

Plugging these values into (RW), we obtain

In the above computations, the arguments of the functions have been deleted for
notational convenience. For instance,/is an abbreviation for/(f- 8(r)).

The only possible way for (*) to hold for all reasonable / is for the coefficients of
/",/' and/to each be equal to zero. Equating the coefficient of/" to zero, gives



306 GENERAL SUPPLEMENTARY REFERENCES

Together with 8 > 0 and 5(0)=0, we deduce that

Plugging this into (*) and then considering the coefficients of/gives

Similarly, the/' terms give

Solutions of (3) and (4) are of the form Kr&, where K and /8 are constants. Plugging this
guess for a into (3) and (4) gives:

(3') /J(/J-l) + («-l)/J = 0,

(4') 20 + (n-l) = 0.

Equations (3') and (4') only have a solution for /8 if « = 1 or n = 3. However, plugging in
n = l gives a(r) = l, and thus there is no attenuation. Of course, a world without
attenuation would be unbearably noisy.

Acknowledgments. The author would like to thank R. J. Duffin for historical
discussions. The author would also like to thank an anonymous referee for contributing
the final sentence.
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1. Population Models

POPULATIONS AND HARVESTING*

DAVID A. SANCHEZt

Abstract. Both finite difference and ordinary differential equation models of population growth in
the case in which the harvest rate is constant are discussed.

1. Introduction. In the study of equations describing population growth it is
of interest to study the effects of harvesting (e.g., by hunting, fishing or disease) on
the stability of the population. A simple case which is of qualitative and classroom
interest is the case in which the harvest rate is constant, and we will discuss this
below both for a finite difference equation model as well as an ordinary differential
equation model of the population growth.

2. A finite difference model. Let xn be the number of females capable of
reproducing which exist at breeding period n, and let R(xn) be the average
number of surviving females each produces. Assuming that each female repro-
duces only once, then the population growth can be described by the finite
difference equation

where A is the initial number of females present. A straightforward stability
analysis will show that those values x = xe for which ^?(*e)

= 1 will be points of
equilibrium for the population; they will be stable if R'(xe)<0 and unstable if
R'(xe)>0. A very good elementary discussion of finite difference models for
populations can be found in the book by J. Maynard Srrftth [3]—see also his more
recent advanced treatise [4].

If we suppose a certain fixed number H > 0 of females are harvested during
each breeding period we obtain the equation

and one is interested in studying the effects of harvesting on an equilibrium state xe

of (1). One makes the usual linearization near xe and thus R(x) = l + k(x-xe),
and then letting yn = xn - xe (the deviation from equilibrium) leads to the equation

where terms of second degree are ignored, i.e. this is a local analysis.
The equation (3) can be solved recursively to get

and, since harvesting in the presence of instability can only make things worse, let
us assume xs is a stable equilibrium point. This implies in turn that |1 + kxe\ < I and

* Received by the editors May 1, 1976.
t University of California, Los Angeles, California 90024.
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so k < 0 and from (4) we then obtain the relation

Since (1 + kxe)"-»0 as n^oo then xn+i-*xe-H/(\k\xe) and the effect of
harvesting is to reduce the size of the equilibrium population. For the population
to survive we must have that 0<H<\k\xl = Hc and we can summarize our
analysis with the following plausible statement:

There is a critical level of harvesting Hc such that if 0<H<HC then the
population survives with a lower equilibrium value, whereas if H > Hc the
population expires in finite time.

Note that iiH>Hc one can calculate from expression (5) how long it will take for
the population to expire, i.e. when jtn+1 g 0.

2. A differential equation model. A well known differential equation for
describing population growth is the logistic equation

where x(t) is the population size at time t, and r, k >0. Equilibrium values are
*e = 0 and xs= k (i.e. values where the right hand side vanishes), and the solutions
are the well known logistic curves. Again we suppose a constant harvest rate H > 0
of the population and obtain

The equilibrium values are the zeros of the right hand side of (7) which is a
quadratic and one finds that

(a) It has real positive roots if and only if H^rk/4 = Hc. Otherwise the
right-hand side of (7) is negative.

(b) For H<rk/4 the larger of the two roots is xe = \k[\ + (l-H/Hc)
1/2].

Incidentally, one can solve (7) explicitly by a partial fractions expansion and
quadrature, but that is not the matter of interest here.

Our conclusion from (a) and (b) is exactly the same as for the finite difference
model, and a study of the direction field of (7) when 0<H<HC shows that xe is a
stable equilibrium point whereas the smaller root is unstable. If we note that
rx (1 - x/k) has a maximum Max = rk/4 we conclude that the critical harvest rate is
the maximum possible growth rate of the population—a biologically plausible
result.

ltH>Hc one can calculate the extinction time TH by separation of variables.
In particular if the initial population in (7) is x0 = k, the equilibrium value for (6),
then

Plotting TH against H for fixed Hc should fascinate those advocates of the
doomsday syndrome.

3. Remarks. The effects of constant rate harvesting on one population or
two populations in competition was discussed by the author and F. Brauer in [1].
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The paper contains a comparison of the results above for the logistic equation with
a simulated model by R. M. Miller and D. Botkin [2] of the effect of hunting on the
Sandhill Crane (Grus canadensis) population. An excellent classroom research
project might be to study the effects of harvesting or enrichment (H< 0) on some
of the well known population models described in Smith's book [4]. More general
harvesting rates, e.g. H = Oifx>A,H = H0 otherwise, could also be considered.
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DETERMINISTIC POPULATION MODELS AND STABILITY*

H. BARCLAY AND P. VAN DEN DRIESSCHEt

Abstract. The stability of a linear differential equation system and of an analogous linear difference
equation system is analyzed by Liapunov matrices. Explicit stability criteria are given for the two species
Lotka-Volterra competition model and predator-prey model for population growth.

This note investigates some theoretical, deterministic models for population
growth of interacting species. The n species Lotka-Volterra equations

an = 1, / = ! , • • • , « ,

are commonly used as a model to describe the number of individuals Nf in species i.
Here r, (positive constant) is the intrinsic rate of increase, Kt (positive constant) is the
carrying capacity of the rth species; and a,, is the competition coefficient of the /th
species on the /th, ai; > 0 when the /th species competes with the /th. Interest is in a state
in which the n species coexist and for which the equilibrium point is asymptotically
stable. For such an equilibrium to occur the system dNi/dt = 0 must have a solution
Nt= N* > 0, / = 1, • • • , n, and (1) leads to a linear system for the nontrivial equilibrium
populations Nf. Strobeck [12] uses algebraic arguments to derive determinant condi-
tions for these requirements (in the case of n species) to be satisfied. These results are
well-known for two species; see Pielou [10] and references contained therein.

The above model treats time as a continuous variable, but some corresponding
discrete systems have also been used to discuss population growth; work on these
models is described in May [7] and Maynard Smith [9]. Discrete models are biologically
more realistic in situations when reproduction is seasonal, and growth occurs at discrete
intervals. Both continuous time variation, giving rise to a differential equation system;

* Received by the editors November 22, 1974, and in final revised form April 20, 1977.
t University of Victoria, Victoria, British Columbia, Canada V8W 2Y2.



314 BARCLAY AND VAN DEN DRIESSCHE

and discrete time variation, giving rise to a difference equation system, are considered in
this note. The stability of equilibrium points for both systems is analyzed by Liapunov
matrix methods. Each system can also be solved by a more straightforward method (as
indicated later in this note), but the Liapunov matrix method works for both problems
and is a reasonable method for the discrete system. Conditions are given for the two
species Lotka-Volterra competition model, and also for the two species predator-prey
model, but the methods used can be extended to more species.

Consider'first the continuous model given by (1) with n = 2, that is the two species
competition equations. The nontrivial equilibrium populations are

Here it is assumed that the denominator is nonzero, and the equilibrium populations are
required to be positive. In order to consider the stability of this equilibrium let
Nt = Nf(l + ni), i = l,2. On substituting in (1) with n = 2 and linearizing in «, the
following system results:

For a nonderogatory coefficient matrix, that is a matrix for which the minimal and
characteristic polynomials are identical, this system can be written in companion matrix
form as

This can be seen by forming a second order differential equation from system (3), or by
using a linear transformation so that the coefficient matrix and C are similar; and is a
convenient form for calculations.

Liapunov's theorem is used to determine when the eigenvalues of C have negative
real parts, that is C is stable; for discussions of this theory see, for example, Barnett and
Storey [1], Davies and James [3], Hahn [5]. Let II be the class of positive definite
symmetric matrices. Liapunov's theorem states that matrix C is stable iff there exists
Gell such that C'G + GC = -I, where C is the transpose of C and / is the identity
matrix. This is equivalent to choosing a positive definite Liapunov function V= y'Gy
such that for this system dV/dt = -y'ly, a negative definite function. Carrying out the
calculation for C given by (4) gives

Sylvester's conditions give G £ II iff c2\ < 0 and c22 < 0, which for (4) give x.lx2a > 0 and
xi + x2 > 0. Note that these can also be obtained straightforwardly from (3) by using the
fact that the eigenvalues of the matrix all have negative real parts iff the trace of the
matrix is negative and the determinant of the matrix is positive. These inequalities are
satisfied for positive populations iff

the well-known condition for two species that interspecific competition is less than

where.

WHERE

THAT IS,
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intraspecific. Species satisfying this inequality are called alpha-compatible (Riebesell
[11]). This is a necessary but not sufficient condition for stability, as in addition the
equilibrium values must be positive; thus (2) requires that K^ > ai2K2 and K2>a2iKi.

A discrete analogue to the above linear continuous model, with the same equilib-
rium populations given by (2), is

This system can also be written in companion matrix form as

A Liapunov function can be chosen for this system (Hahn [5]) as V(t) = y'Hy, He II,
giving V(t + l)-V(t)= -y'ly, where B'HB-H= -/. Carrying out this calculation for
the matrix B in (7) gives

where A = (l + b2\)(b22 + b2i-1)(A22-£21 + 1). Sylvester's conditions give Hell iff
1 + 621 > 0, 1 - 621 + £22 > 0, 1 - &2i - b22 > 0. For (7), these give

For positive equilibrium populations this last inequality reduces to the alpha-
compatibility condition for the continuous model. But in addition the discrete model
requires for stability that the first two inequalities of (9) are satisfied, conditions which
limit the magnitudes of the intrinsic growth rates. May [8] has recently derived similar
inequalities for another difference equation analogue of the Lotka-Volterra competi-
tion model. As noted earlier (9.3) is the alpha-compatibility condition, so for the
competition model under consideration a e (0, 1). Taking these inequalities together
the stability region reduces to {(x i, x2): 0<x i<2 , 0<x 2< 2(2 - Xi)/(2 - axi)}, which is
shaded in Fig. l(a).

Brauer [2] has analyzed a two species predator-prey model which is similar to the
above continuous time model except that «21 is now negative as an increase in species
one (the prey) produces an increase in species two (the predator). The method used
above can be applied directly to this model and shows that if Ki>a^K2 then the
equilibrium given by (2) with a 2 i<0 is stable. Here the system is trivially alpha-
compatible.

The discrete analogue of this predator-prey model can be treated in the same way
as the competition model above and inequalities (9) are unaltered except that a > 1, and
(9.3) is trivially satisfied. The other two inequalities place additional restrictions on the
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parameters for a stable equilibirium, again showing the same feature of continuous
versus discrete models. Inequalities (9.1) and (9.2) now interact giving a stability region
as sketched in Fig. l(b), the stability region is shaded.

Maynard Smith [9] considers a discrete predator-prey model in which it is assumed
that the number of offspring produced by each predator is proportional to the number
of prey killed by that predator. This model can be obtained as a limiting case of that
analyzed above, where in terms of Maynard Smith's parameters R and r, the maximum
reproductive rate of prey and predator respectively,

Inequalities (9) then agree with Maynard Smith's results.
It should be noted that for one species obeying the discrete logistic equation, the

inequalities (9) (with a = 1) reduce to N* = KI, r^ e (0, 2) as the well-known stability
criterion. The discrete analogue (6) corresponds to replacing the derivative by the
forward difference operator with unit step size. If arbitrary step size h > 0 is used, the
result is modified to r\ e (0,2/h) (May [7]). The continuous logistic model is stable for
/•j € (0, oo); thus the forward difference analogue requires a more stringent condition for
stability. May bases his arguments on determinant relations for the differential and
difference equation systems. For a unit step size he shows that the analogous forward
difference system is stable when |A +11 < 1 where A are the eigenvalues of the matrix of
the differential system. Applying this result to system (3) or (4), and using Theorem 4.2
of Goldberg [4] or Lemma 1 of Levin [6], gives an alternative way to derive
inequalities (9) for the difference system. These can also be derived by means of a
bilinear mapping taking the left half plane onto the unit circle, see Taussky [13], van
den Driessche [14].
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FIG. 1. Stability regions in xi, x? plane for discrete models, Xi = (r-l/Ki)N:f, x2 = fa/K2)Nz, a =
\ — al2

a2i- Broken curves are X2 = x1/(axi~ I) for (9.1), solid curves are x2 = 2(x1-2)/(axi-2) for (9.2).
Fig. 1 (a) is competition model with a = | < 1, Fig. 1 (b) is predator-prey model with a = 2 > 1.
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POPULATION GROWTH IN A CLOSED SYSTEM*

ROBERT D. SMALLt

Abstract. Volterra's model for population growth in a closed system includes an integral term to indicate
accumulated toxicity in addition to the usual terms of the logistic equation. Solutions to this equation are studied
by means of singular perturbation techniques. Two major types of systems are discovered, those with populations
immediately sensitive to toxins and those that succumb to toxins only after long times.
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This note deals with a mathematical model of the accumulated effect of toxins on a
population living in a closed system. Scudo [1] indicates in his review that Volterra
proposed this model for a population u ( t ) of identical individuals which exhibits crowding
and sensitivity to "total metabolism":

If the integral term on the right is missing we have the well-known logistic equation with
birth rate a and crowding coefficient b. The last term contains the integral that indicates
the "total metabolism" or total amount of toxins produced since time zero. The individual
death rate is proportional to this integral, and so the population death rate due to toxicity
must include a factor u. The presence of the toxic term due to the system being closed
always causes the population level to fall to zero in the long run, as will be seen shortly.
The relative size of the sensitivity to toxins, c, determines the manner in which the
population evolves before its fated decay. Equation (1) can be solved in quasi-closed form,
the result of which is not very insightful. If we set v = f u(r)dr, then we can eliminate tin
favor of M and v and separate variables obtaining an inverse integral form for v.

A much more informative approach involves singular perturbation techniques which,
in several cases, give good closed form approximations to the solutions. In order to
establish the size of the solution and the time scale, we scale out the parameters of (1) as
much as possible. There are four different ways to do this, each having its own
importance. The scaled equations are

We consider the two cases c/ab small and c/ab large, with the case between being
inferred from the former cases.

Case of c/ab small. This type of population is relatively insensitive to toxins. Initially,
the population growth is limited primarily by crowding effects, the toxin build up
dominating only in the long run. Equations (2) and (3) are the relevant ones here, the
solutions MI and «2 being identical but t2 =• (c/ab)tl being a slow time compared with /,. If
we neglect the small term of (2), the approximate solution is

where ulo is the value of u{ at t\ = 0. Neglecting the small term of (3), we obtain

and the initial condition u2(0) - 0 or 1, the nontrivial solution being
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Solution (6) provides the correct initial value but cannot remain valid over long times
because for large r , , du,/dt} goes to zero and converts (2) into (3). We must start with (6)
and then when the amplitude reaches a value close to 1, switch to (7). The amplitudes
match because when f , is large relative to 1 so that w, = 1, t2 is still of order c/ab and
«2 = 1 • Thus we have a rapid rise along the logistic curve and then a slow exponential
decay to zero. Back in the original variables we can obtain a uniformly valid solution by
adding the two solutions and subtracting the common part. For c/ab small we obtain

Case of c/ab large. Populations of this type are extremely sensitive to toxins. Their
growth is immediately checked by toxic accumulations. Here the relevant equations are
(4) and (5). Neglecting the small term in (4), we have the solution

found by trying solutions proportional to sech2. If u}0 is small compared to c/ab, this

FlG. 1. Numerical solution of du/dt — u — u1 — cu fa u(r)drfor u(Q) — 0 . 1 . The curves are demarked
by their value ofc.

solution remains small and (4) remains valid. In the original variables we have the
solution, valid for c/ab large and u0 small compared to a/b,

For u0 large compared to a/b we have (5) which, while it cannot be solved in closed form,
clearly exhibits decay of its solutions on a time scale, ?4 = (c/ab)t3, fast compared to f 3 .
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Initially large amplitudes decay quickly until the solution joins solution (10).
Figure 1 illustrates the two major cases with the larger amplitude curves being the

logistic curve with slow decay and the smaller amplitude ones being sech2.
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2. Medical Models

MEDICAL APPLICATION OF FOURIER ANALYSIS*

D. E. RAESIDE.t W. K. CHUt AND P. A. N. CHANDRARATNAt

Abstract. An example of a successful application of Fourier analysis to the classification of medical
echocardiograms is discussed and illustrated.

Ultrasound provides a means for the noninvasive examination of the interior of
the human heart. In this technique a short burst of ultrasound is transmitted through
the chest wall and "echoes" are received from underlying tissue interfaces which
separate regions of differing acoustic impedance. By measuring the time which elapses
between transmission of the ultrasound and reception of an echo, and assuming a
particular value for the speed of sound in tissue, it is possible to locate the structures
within the heart and, by many repetitions of the transmission-reception sequence, to
quantify their temporal behavior. An echocardiogram is the graphical presentation of
such data. Figure 1 shows a typical normal echocardiogram. Each of the several
waveforms which appear in it is associated with the motion of a particular cardiac
structure. During an echocardiographic examination, the patient is usually in the
supine position, with the ultrasound transducer (acting both as the transmitter and the
receiver) placed on the chest wall slightly lateral to the left sternal border and in the
fourth intercostal space (the procedure is illustrated in Fig. 2). Figure 3 presents the
heart cross section showing cardiac structures which the ultrasonic beam passes
through.

This note describes an application of pattern recognition methodology to the
following four-class problem: classification of the normal, mitral stenosis, mitral valve
prolapse and idiopathic hypertrophic subaortic stenosis cardiac conditions using
echocardiogram analysis. Since none of the presently utilized clinical criteria pos-

FIG. 1. A typical, normal echocardiogram (AO = Aortic Root, LA = Left Atrium, AMV = Anterior
Mitral Valve, PMV = Posterior Mitral Valve, IVS = Interventricutar Septum, ENDO = Endocardium, EPI =
Epicardium).

* Received by the editors September 5, 1977.
t Department of Radiological Sciences and Division of Cardiology, University of Oklahoma Health

Sciences Center, Oklahoma City, Oklahoma 73190.
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sessed the capability of classifying waveforms for this four-class problem, it was
decided to try Fourier analysis. The results for the classification of anterior mitral
leaflet waveforms were excellent. In addition, Fourier analysis proved to be equally
good for the classification of aortic root and left ventricular wall waveforms. The
anterior mitral leaflet results are described below.

If x(t) denotes the time-varying amplitude of an echocardiogram waveform, then
the finite Fourier series representation of x(t) can be expressed satisfactorily as

where /o, the fundamental frequency of the series, is the reciprocal of the heart period.

FIG. 2. The echocardiographic technique.
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FIG. 3. A cross section of the heart showing cardiac structures as the ultrasonic beam sweeps through the
heart (RV = Right Ventricle, AO = Aortic Root, IVS = Interventricular Septum, LA = Left Atrium, AML -
Anterior Mitral Leaflet, PML = Posterior Mitral Leaflet, LV = Left Ventricle, ENDO = Endocardium, EPI =
Epicardium).

FIG. 4. Approximation error versus the number of harmonics used in reconstruction.



324 RAESIDE, CHU AND CHANDRARATNA

The term e(t) denotes the "error" resulting from the choice of a finite value of N. The
terms Cn and 6n are the "power" and "phase angle", respectively, of the nth harmonic
of the series. In this note N was taken to be 20. This gave an adequate representation
of the echocardiogram waveforms with an average error less than 5% (see Fig. 4).

FIG. 5. Scattergram associated with classes, N, MS, MVP, and IHSS. Decision boundaries determined by
a human were drawn to aid the visualization of the four clusters.

FIG. 6. Decision boundaries determined by using the Perceptron algorithm (dashed lines) compared to the
boundaries determined visually by a human (dotted lines). To simplify the presentation, the data are
represented by one standard deviation "error bars" about the cluster centroids.
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To characterize the anterior mitral leaflet waveform, the coefficients Co, C\, • • •,
€20 were utilized to form a 21-component feature vector for each of the 194 files in a
data base consisting of 101 normal subjects (class N), 39 patients with mitral stenosis
(class MS), 31 patients with mitral valve prolapse (class MVP) and 21 patients with
idiopathic hypertrophic subaortic stenosis (class IHSS). Because of the complexity
of dealing with vectors of high dimensionality, feature ranking was carried out to
establish criteria which would allow the elimination of the less informative
components of the feature vector (see any text on pattern recognition for a description
of feature ranking, for example [1, Chap. 7]). This made it possible to truncate the
feature vector summarizing the information contained in the anterior mitral leaflet
waveform so as to include just the components C0 and C\. Figure 5 demonstrates the
ability of the features C0 and C\ to discriminate between the classes N, MS, MVP, and
IHSS, and Fig. 6 shows decision boundaries determined by the Perceptron algorithm
[1, pp. 158-168] together with a comparison of these boundaries with those drawn by
a human.

Acknowledgment. The authors would like to express their gratitude to Dr.
R. E. D. Brown and Mr. H. Poehlmann for their interest in the study described here.
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Estimation of the Median Effective Dose in Bioassay

Problem 81-12, by D. E. RAESIDE (University of Oklahoma, Health Sciences Center).

Consider a system subjected to a single stimulus intensity (dose level) x, and assume
that the system responds in just one of two ways, "positively" or "negatively". Let the
probability of a positive response be denoted by IT, and assume that ir is related to x
through the quanta! logistic dose response function

Use Bayesian estimation theory with a catenary loss function and a conjugate prior to
determine an optimal estimate of the parameter y (the parameter (3 is assumed known).
Show that for certain parameter values and for large numbers of positive and negative
responses this Bayes estimator is approximately the maximum likelihood estimator. See
the paper Optimal Bayesian sequential estimation of the median effective dose by P. R.
Freeman (Biometrika, 57 (1970), pp. 79-89) for a treatment of this problem using a
quadratic loss function. See the paper A class of loss function of catenary form by D. E.
Raeside and R. J. Owen (J. Statist. Phys., 7 (1973), pp. 189-195) for a summary of
properties of the catenary loss function.

Solution by P. W. JONES and P. SMITH (Keele University, Staffordshire).
For a single dose level x let the number of responses in ri trials be r'. The likelihood is

then
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Suppose that y is assigned a natural conjugate prior distribution with density

involving parameters r0, n0. Then by Bayes' theorem the posterior distribution of 7 is (1)
with (r0, HO) replaced by (r, ri) where r = r0 + r' and n - n0 + ri.

We require the minimum with respect to d of the integral

where

This gives the Bayes estimator d* of 7 with respect to the catenary loss function
cosh [a(y - d)] - \, where a is a positive constant.

The integral can be written

with

The minimizer of (2) is

The substitution e fflf = u transforms (3) into

from [1, p. 285]. Express the beta function B(-,-)'\n terms of gamma functions ([1], p.
950) and substitute for Fn in (4):

with (Bayes) risk given by substituting d - d* in (2). In order to obtain the asymptotic
behavior of (5) for large « we require

which has been adapted from the asymptotic expansion of the logarithm of the gamma
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function given in [1, p. 940]. With a similar expression for In T(n - r - a//3), the
expansion for d* becomes

as n —* oo (nQ finite). The parameter values must satisfy r > a/(3.
The maximum likelihood estimator of 7 is given by jc + In (n'/r' - l)//3, which has

the same leading term as d* for large n'.
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A MODEL FOR DRUG CONCENTRATION*

L. E. THOMASt

Abstract. A model, suitable for classroom use, is developed to describe the concentration of a
drug in the body when the drug is administered repeatedly. The model shows that under certain
conditions there are limiting values for the maximum and minimum concentrations of the drug in the
system. Cases of random detoxification and enzymatic detoxification are discussed.

1. The model. In this note we show how a simple differential equations
model can be used to predict the concentration of a drug in the body under certain
circumstances. The results are generalizations of those presented by Rustagi [2];
the method of solution used was suggested in § 5 of [3].

We are interested in what happens to the concentration of a drug in the body
when the drug is introduced into the body repeatedly. Will repeated application of
the drug cause the concentration to become too large eventually? How should the
time interval between applications be chosen so that the concentration does not
become so large as to be dangerous or so small as to be ineffective?

We will answer these questions on the basis of the following assumptions: If
y(t) is the concentration of the drug at time t, we assume that (i) the rate of
destruction of the drug depends only upon the amount of drug present, i.e.,
y'=/(y). Appropriate forms for the function / will be considered later, but it
makes sense to assume that (ii) / is a continuous, nonpositive, monotone decreas-
ing function with /(O) = 0. At time t = 0, T, 2T, • • • a dose of the drug is adminis-
tered in such a way that the concentration of the drug is increased by an amount d.
We assume that (iii) the concentration is immediately increased throughout the
body when the dose is administered.

Under these assumptions, there is a sequence of initial value problems which
describes the situation. The important features of this sequence can be seen in the
accompanying figure. Let yn(t) be the concentration of the drug on the interval

* Received by the editors October 20, 1975, and in revised form October 27, 1976.
t Department of Mathematics, Saint Peter's College, Jersey City, New Jersey 07306.
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(n — \)T<t<nT. When the drug is first introduced into the body at time t = 0, the
concentration of the drug rises from 0 to d, so y i(0) = d. Thereafter the concentra-
tion decreases according to the equation y \ =/(y i) to a value y j(T) when a booster
dose is given raising the concentration to y ̂ T) + d. This value becomes the initial
value of y2: yaiT)= y\(T) + d. After this jolt, the concentration of the drug again
decreases, this time according to y'2 =/(y2) until it reaches y2(2T) when another
dose is given, raising the concentration to y2(2T) + d. This becomes the initial
condition for y3: y3(2T) = y2(2T) + d. This process continues, giving a sequence of
initial value problems, the general case being

on the interval nT<t<(n + l)T.
The concentration of the drug immediately after the administration of the

dose at time nT is yn (nT) + d. The concentration then decreases until it reaches its
minimum value yn+1((n + 1)T) just before a new dose is given. Since yn(nT) + d

and yn+i((n + l)T) give the maximum and minimum concentrations of the drug on
the interval nT<t<(n + l)T, the questions raised at the beginning of this note
can be answered by considering the sequence {yn(nT}}.

In particular, if it could be shown that the sequence {yn(nT}} converges to a
limit L, say, then we would know that the maximum concentration approaches
L + d and that the minimum approaches L. See Fig. 1.

2. Analysis. By separating the variables in (1) and integrating, we find

where we have introduced x as a dummy variable of integration and set xn =
yn(nT) for convenience in notation.

Assume for the moment that xn = yn (nT) -> L. Then taking the limit n -» oo in
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(2) we obtain

It will be shown below (Theorem 1) that if there is a number L which satisfies
equation (3), then {yn (nT)} does in fact converge to L. For the moment we use this
result without proof to analyze two examples.

3. Examples. We will consider two explicit forms of the function / which may
be appropriate under certain circumstances. The first case is that in which the
concentration of the drug is reduced by random action of the system on the drug.
(Such is the case with penicillin, for example.) Under random action, the rate at
which the drug is destroyed is proportional to the amount of the drug present,
so /(*) = -kx, k >0. We can calculate the limiting maximum and minimum
concentrations L +d and L by using equation (3)

This last equation can be solved for L to obtain L =d/(ekt — 1). The limiting
maximum concentration is L +d = d/(l -e'kT), This agrees with the result in [2]
where the case of f(x) = —kx was also discussed.

As another example, consider the case where the destruction of the drug is
due to enzymatic action. In this case it is appropriate under some conditions to
take/Ot) = —ax/(b +x), a, b >0. This is the Michaelis-Menton equation which is
derived in most texts on biological chemistry; see, for example, [1, pp. 225-229].
When the concentration of the drug is very small, the enzymatic case reduces to
the case of random action, but when the concentration of the drug is large, as with
repeated doses of an alcoholic beverage, the Michaelis-Menton equation pro-
vides a reasonable model. By putting/(*) = -axj(b +x) into (3), integrating, and
solving for L, we find for the minimum and maximum concentrations

and

It is interesting to note that a solution exists in this case only if d <aT. If d >aT,
then either the dosage is too large or the time interval too short (or both) for the
concentration to be reduced sufficiently between applications of the drug for a
limit to be established.

We note in passing that in both of these examples, the limiting concentration
L increases if d increases and decreases if T increases. These results, which are not
surprising, are consequences of Theorem 2 below.

4. Theorems.
THEOREM 1. If f is a continuous, monotone decreasing, nonpositive function

with /(O) = 0 which is such that the equation
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has solution r=L, then the sequence {xn} defined by (2) with x,l=yl(T) converges
toL.

Proof. Because of the monotonicity of /, the solution L of equation (4) is
unique. We will show that {*„} is a monotone bounded sequence. Suppose that
x, <L. Then (with g(x) = (!//(*)),

Thus, x2 < L. Since

and jC j<L, the monotonicity of / implies that (xl + d) — x2<(L + d) — L. Thus
xl <x2. The same reasoning, coupled with mathematical induction, will show that
if x1<L, then xn <xn+l for n = 1, 2, 3, • • • . The sequence {xn} is therefore
monotone increasing and bounded above by L. A similar argument will show that
if x,>L, then {*„} is a monotone decreasing sequence bounded below by L.
Should it happen that xl=L, then xn=L, all n. In each case the sequence
converges to L since the function

is continuous in r.
THEOREM 2. For f as in Theorem 1, equation (4) defines r implicitly as a

function of d and T. This function is monotone increasing in d (T fixed) and
monotone decreasing in T (d fixed).

Proof. The first statement of the theorem follows from the monotonicity of /.
The remainder follows since dr/dd is positive and dr/dT is negative.

Project suggestions. Students may wish to formulate and solve other problems
described by first order equations. Some which come to mind are a growing
population periodically decimated by disease, a cooling body whose temperature
is periodically changed drastically.

Acknowledgment. The author is indebted to the referees for their very
helpful suggestions.
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1. An Unsolved Problem in the Behavioral Sciences

A Variant of Silverman's Board of Directors Problem*

Problem 78-9*, W. AIELLO AND T. V. NARAYANA (University of Alberta).

Suppose we assign positive integer weights to the vote of each member of a board
of directors that consists of n members so that the following conditions apply:

(1) Different subsets of the board always have different total weights so that
there are no ties in voting (tie-avoiding).

(2) Any subset of size k will always have more weight than any subset of size
k -1 (k = 1, • • • , n) so that any majority carries the vote, abstentions allowed
(nondistorting).

Kreweras, Wynne and Narayana [1] have given a solution (shown in table 1) for
n = I , • • • , 1 that can be extended very easily from any n to n + 1. It is conjectured
that this is a minimal dominance solution. Here, an increasing sequence (yi, • • • , yn)
is said to dominate another increasing sequence (x\, • • • , xn) if y, =x,; (/ = 1, • • • , n).
So a solution (jei, • • • , * „ ) is minimal dominant if no other solution (yi, • • • , y«) exists
such that Xi g y, (/ = ! , • • • , « ) .

TABLE 1
Nondistorting, tie-avoiding integer vote weights Wn.

Members, n

Totals, Sn

Column vectors

of vote weights, Wn

1 2

1 3

1 2
1

3

9

4
3
2

4

21

7
6
5
3

5

51

13
12
11
9
6

6

117

24
23
22
20
17
11

7

271

46
45
44
42
39
33
22

The underlined values along the diagonal of vector elements are the /„ values,
where:

REFERENCE

[1] B. WYNNE AND T. V. NARAYANA, Tournament configuration and weighted voting, Cahiers du EURO,
Paris, to appear.

*Although no Classroom Notes were submitted to SIAM Review in this field, because of its importance, I have included
an available unsolved problem and a list of general references. Editor.
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